We report point-contact measurements of anisotropic magnetoresistance (AMR)
in a single crystal of antiferromagnetic (AFM) Mott insulator Sr2IrO4. The
point-contact technique is used here as a local probe of magnetotransport
properties on the nanoscale. The measurements at liquid nitrogen temperature
revealed negative magnetoresistances (MRs) (up to 28%) for modest magnetic
fields (250 mT) applied within the IrO2 a-b plane and electric currents flowing
perpendicular to the plane. The angular dependence of MR shows a crossover from
four-fold to two-fold symmetry in response to an increasing magnetic field with
angular variations in resistance from 1-14%. We tentatively attribute the
four-fold symmetry to the crystalline component of AMR and the field-induced
transition to the effects of applied field on the canting of AFM-coupled
moments in Sr2IrO4. The observed AMR is very large compared to the crystalline
AMRs in 3d transition metal alloys/oxides (0.1-0.5%) and can be associated with
the large spin-orbit interactions in this 5d oxide while the transition
provides evidence of correlations between electronic transport, magnetic order
and orbital states. The finding of this work opens an entirely new avenue to
not only gain a new insight into physics associated with spin-orbit coupling
but also better harness the power of spintronics in a more technically
favorable fashion.Comment: 13 pages, 3 figure