150 research outputs found

    Blinking and normal ocular surface in school-aged children and the effects of age and screen time

    Full text link
    Purpose Baseline ocular surface characteristics in children require investigation. This study characterised blinking and relationships with ocular symptoms, tear film and digital device use. Methods 45 children aged 6-15 years (56% female) participated in a cross-sectional study. Ocular surface symptoms (Instant Ocular Symptoms Survey, Dry Eye Questionnaire 5, Symptoms Assessment in Dry Eye, Ocular Surface Disease Index, Ocular Comfort Index and Numerical Rating Scale) and clinical indices (lipid layer thickness, tear secretion and stability, meibomian gland) were assessed. Blink rate and interblink interval were measured in situ using a wearable eye-tracking headset (Pupil Labs GmbH, Germany). Associations between blinking, ocular surface, age, and digital device use (bivariate and partial correlations) and between automated and manually counted blink rate (Bland & Altman) were examined. Results Mean blink rate and interblink interval were 20.5±10.5 blinks/min and 2.9±1.9 s during conversation. There was no difference between automated and manual blink rate (p=0.78) and no relationship between blinking and digital device use, age or sex. Mean group symptoms were within normal range and not associated with clinical measurements including blinking. Greater tear volume was associated with a faster blink rate (r=0.46, p=0.001) and shorter interblink interval (r=-0.36, p=0.02). Older age was associated with improved tear volume (r=0.37, p=0.01) and stability (r=0.38, p=0.01). Conclusions Blinking characterised in situ was not impacted by age or habitual digital device use. A faster blink rate was associated with greater tear volume but not symptoms. Improved tear function was found with age suggesting that the ocular surface continues to develop through childhood

    Blink rate measured in situ decreases while reading from printed text or digital devices, regardless of task duration, difficulty or viewing distance

    Get PDF
    Purpose: To compare blinking measured in situ during various tasks and examine relationships with ocular surface symptoms. The day-to-day repeatability of the blink rate and interblink interval was assessed

    Global Reprogramming of Host SUMOylation during Influenza Virus Infection

    Get PDF
    Dynamic nuclear SUMO modifications play essential roles in orchestrating cellular responses to proteotoxic stress, DNA damage, and DNA virus infection. Here,we describe a non-canonical host SUMOylation response to the nuclear-replicating RNA pathogen, influenza virus, and identify viral RNA polymerase activity as a major contributor to SUMO proteome re-modeling. Using quantitative proteomics to compare stress-induced SUMOylation responses, we reveal that influenza virus infection triggers unique re-targeting of SUMO to 63 host proteins involved in transcription, mRNA processing, RNA quality control, and DNA damage repair. This is paralleled by widespread host deSUMOylation. Depletion screening identified ten virus-induced SUMO targets as potential antiviral factors, including C18orf25 and the SMC5/6 and PAF1 complexes. Mechanistic studies further uncovered a role for SUMOylation of the PAF1 complex component, parafibromin (CDC73), in potentiating antiviral gene expression. Our global characterization of influenza virus-triggered SUMO redistribution provides a proteomic resource to understand host nuclear SUMOylation responses to infection

    Prime Focus Spectrograph (PFS) for the Subaru Telescope: Overview, recent progress, and future perspectives

    Full text link
    PFS (Prime Focus Spectrograph), a next generation facility instrument on the 8.2-meter Subaru Telescope, is a very wide-field, massively multiplexed, optical and near-infrared spectrograph. Exploiting the Subaru prime focus, 2394 reconfigurable fibers will be distributed over the 1.3 deg field of view. The spectrograph has been designed with 3 arms of blue, red, and near-infrared cameras to simultaneously observe spectra from 380nm to 1260nm in one exposure at a resolution of ~1.6-2.7A. An international collaboration is developing this instrument under the initiative of Kavli IPMU. The project is now going into the construction phase aiming at undertaking system integration in 2017-2018 and subsequently carrying out engineering operations in 2018-2019. This article gives an overview of the instrument, current project status and future paths forward.Comment: 17 pages, 10 figures. Proceeding of SPIE Astronomical Telescopes and Instrumentation 201

    Paving the way for research findings: writers' rhetorical choices in education and applied linguistics

    Get PDF
    Notwithstanding the existence of previous investigations into how research results are presented in different academic disciplines, fewer studies have looked into how authors pave the way for their results, the interdisciplinary differences in ‘result pavements’, and the interconnections between their communicative functions and linguistic choices. Using the techniques of genre analysis, I have analyzed two corpora of research reports in applied linguistics and education in order to identify the possible ways in which experienced writers schematically pave the way for their findings. Using evidence based on authentic research articles, this study demonstrates how writers set the stage for their research results by (i) demonstrating their control of the structure and flow of result-related information, (ii) connecting past research with a current finding while furnishing pertinent background elements that lead the readership progressively to specific findings, (iii) regenerating readers’ interest in their initial research purposes, and (iv) deploying locatives to embed results in a ‘space-saving strategy’ aimed at presenting an abridged Results section. I have also analyzed interdisciplinary differences in the frequencies of these rhetorical steps and the range of intricate linguistic mechanisms employed by authors as communicative resources in each step to establish a smooth rhetorical transition that sets the stage for their research results

    Conidiation Color Mutants of Aspergillus fumigatus Are Highly Pathogenic to the Heterologous Insect Host Galleria mellonella

    Get PDF
    The greater wax moth Galleria mellonella has been widely used as a heterologous host for a number of fungal pathogens including Candida albicans and Cryptococcus neoformans. A positive correlation in pathogenicity of these yeasts in this insect model and animal models has been observed. However, very few studies have evaluated the possibility of applying this heterologous insect model to investigate virulence traits of the filamentous fungal pathogen Aspergillus fumigatus, the leading cause of invasive aspergillosis. Here, we have examined the impact of mutations in genes involved in melanin biosynthesis on the pathogenicity of A. fumigatus in the G. mellonella model. Melanization in A. fumigatus confers bluish-grey color to conidia and is a known virulence factor in mammal models. Surprisingly, conidial color mutants in B5233 background that have deletions in the defined six-gene cluster required for DHN-melanin biosynthesis caused enhanced insect mortality compared to the parent strain. To further examine and confirm the relationship between melanization defects and enhanced virulence in the wax moth model, we performed random insertional mutagenesis in the Af293 genetic background to isolate mutants producing altered conidia colors. Strains producing conidia of previously identified colors and of novel colors were isolated. Interestingly, these color mutants displayed a higher level of pathogenicity in the insect model compared to the wild type. Although some of the more virulent color mutants showed increased resistance to hydrogen peroxide, overall phenotypic characterizations including secondary metabolite production, metalloproteinase activity, and germination rate did not reveal a general mechanism accountable for the enhanced virulence of these color mutants observed in the insect model. Our observations indicate instead, that exacerbated immune response of the wax moth induced by increased exposure of PAMPs (pathogen-associated molecular patterns) may cause self-damage that results in increased mortality of larvae infected with the color mutants. The current study underscores the limitations of using this insect model for inferring the pathogenic potential of A. fumigatus strains in mammals, but also points to the importance of understanding the innate immunity of the insect host in providing insights into the pathogenicity level of different fungal strains in this model. Additionally, our observations that melanization defective color mutants demonstrate increased virulence in the insect wax moth, suggest the potential of using melanization defective mutants of native insect fungal pathogens in the biological control of insect populations
    corecore