6,753 research outputs found
Maybe Definitely – Definitely Maybe? EC Competition Law – Is the Time Ripe for Reform?
[Summary]. The aim of this article is to discuss whether the timing for the Commission’s Proposal for reforming the implementation of Articles 81 and 82 of the EC Treaty is appropriate based on legal certainty considerations. The Proposal suggests to decentralise the day-to-day application of the EC antitrust rules further than is the case today and to abolish the present notification system whereby undertakings can apply for exemptions pursuant to Article 81(3) and negative clearances. The article provides examples showing that presently, the answers to certain legal questions of EC competition rules are vague or contradictory, and that if the proposed reform were to be implemented in its present form, the undertakings would have to carry the full risk for compliance with the competition rules but without a simple or straightforward way of obtaining guidance or legally binding exemptions or negative clearances. While recognising the need for a reform of the implementation system of the EC competition rules, the article argues that consistency and coherence in the understanding and application of the competition rules are a prerequisite to ensure legal certainty which, in turn, is a prerequisite for the implementation of the Commission’s plans to decentralise EC competition law application. It is therefore suggested that the time is not yet ripe for the type of reform proposed by the Commission and that efforts should instead focus on creating the basis for such a reform by adopting clear guidelines and/or binding legislation that secure the legal certainty of the undertakings that have to operate under the EC competition law framework
NICMOS Observations of Low-Redshift Quasar Host Galaxies
We have obtained Near-Infrared Camera and Multi-Object Spectrometer images of
16 radio quiet quasars observed as part of a project to investigate the
``luminosity/host-mass limit.'' The limit results were presented in McLeod,
Rieke, & Storrie-Lombardi (1999). In this paper, we present the images
themselves, along with 1- and 2-dimensional analyses of the host galaxy
properties. We find that our model-independent 1D technique is reliable for use
on ground-based data at low redshifts; that many radio-quiet quasars live in
deVaucouleurs-law hosts, although some of the techniques used to determine host
type are questionable; that complex structure is found in many of the hosts,
but that there are some hosts that are very smooth and symmetric; and that the
nuclei radiate at ~2-20% of the Eddington rate based on the assumption that all
galaxies have central black holes with a constant mass fraction of 0.6%.
Despite targeting hard-to-resolve hosts, we have failed to find any that imply
super-Eddington accretion rates.Comment: To appear in ApJ, 28 pages including degraded figures. Download the
paper with full-resolutio figures from
http://www.astro.wellesley.edu/kmcleod/mm.p
Nonlinear looped band structure of Bose-Einstein condensates in an optical lattice
We study experimentally the stability of excited, interacting states of
bosons in a double-well optical lattice in regimes where the nonlinear
interactions are expected to induce "swallowtail" looped band structure. By
carefully preparing different initial coherent states and observing their
subsequent decay, we observe distinct decay rates that provide direct evidence
for multivalued, looped band structure. The double well lattice both stabilizes
the looped band structure and allows for dynamic preparation of different
initial states, including states within the loop structure. We confirm our
state preparation procedure with dynamic Gross-Pitaevskii calculations. The
excited loop states are found to be more stable than dynamically unstable
ground states, but decay faster than expected based on a mean-field stability
calculation, indicating the importance of correlations beyond a mean field
description.Comment: 6 pages, 6 figure
Dynamical solutions of a quantum Heisenberg spin glass model
We consider quantum-dynamical phenomena in the ,
infinite-range quantum Heisenberg spin glass. For a fermionic generalization of
the model we formulate generic dynamical self-consistency equations. Using the
Popov-Fedotov trick to eliminate contributions of the non-magnetic fermionic
states we study in particular the isotropic model variant on the spin space.
Two complementary approximation schemes are applied: one restricts the quantum
spin dynamics to a manageable number of Matsubara frequencies while the other
employs an expansion in terms of the dynamical local spin susceptibility. We
accurately determine the critical temperature of the spin glass to
paramagnet transition. We find that the dynamical correlations cause an
increase of by 2% compared to the result obtained in the spin-static
approximation. The specific heat exhibits a pronounced cusp at .
Contradictory to other reports we do not observe a maximum in the -curve
above .Comment: 8 pages, 7 figure
Flux melting in BSCCO: Incorporating both electromagnetic and Josephson couplings
Multilevel Monte Carlo simulations of a BSCCO system are carried out
including both Josephson as well as electromagnetic couplings for a range of
anisotropies. A first order melting transition of the flux lattice is seen on
increasing the temperature and/or the magnetic field. The phase diagram for
BSCCO is obtained for different values of the anisotropy parameter .
The best fit to the experimental results of D. Majer {\it et al.} [Phys. Rev.
Lett. {\bf 75}, 1166 (1995)] is obtained for provided one
assumes a temperature dependence of the
penetration depth with . Assuming a dependence
the best fit is obtained for . For finite anisotropy the data is shown to collapse on a straight line
when plotted in dimensionless units which shows that the melting transition can
be satisfied with a single Lindemann parameter whose value is about 0.3. A
different scaling applies to the case. The energy jump is
measured across the transition and for large values of it is found to
increase with increasing anisotropy and to decrease with increasing magnetic
field. For infinite anisotropy we see a 2D behavior of flux droplets with a
transition taking place at a temperature independent of the magnetic field. We
also show that for smaller values of anisotropy it is reasonable to replace the
electromagnetic coupling with an in-plane interaction represented by a Bessel
function of the second kind (), thus justifying our claim in a previous
paper.Comment: 12 figures, revtex
Copilot Pro®: A full method for a steering of the machining.
International audienceCopilot Pro® is a method for the initial and regular machine-tools setup, developed by the Symme laboratory of the Savoy University and by the Technical Center of Industries of Screw-machining (Ctdec) in France. Its first step is the organization of the different machining operations, in setup steps, themselves subdivided into measuring steps. The second step consists in determining the manufacturing dimensions to measure at the end of each measuring step. Finally, the third step consists in linking the manufacturing dimensions to both the correctors and the tool-dimensions, in the aim of calculating the corrections that have to be done in function of the deviations measured on the manufacturing dimensions. With this method, the steering of an industrial workpiece is performed with two steering parts instead of ten before
Directed polymers on a Cayley tree with spatially correlated disorder
In this paper we consider directed walks on a tree with a fixed branching
ratio K at a finite temperature T. We consider the case where each site (or
link) is assigned a random energy uncorrelated in time, but correlated in the
transverse direction i.e. within the shell. In this paper we take the
transverse distance to be the hierarchical ultrametric distance, but other
possibilities are discussed. We compute the free energy for the case of
quenched disorder and show that there is a fundamental difference between the
case of short range spatial correlations of the disorder which behaves
similarly to the non-correlated case considered previously by Derrida and Spohn
and the case of long range correlations which has a totally different overlap
distribution which approaches a single delta function about q=1 for large L,
where L is the length of the walk. In the latter case the free energy is not
extensive in L for the intermediate and also relevant range of L values,
although in the true thermodynamic limit extensivity is restored. We identify a
crossover temperature which grows with L, and whenever T<T_c(L) the system is
always in the low temperature phase. Thus in the case of long-ranged
correlation as opposed to the short-ranged case a phase transition is absent.Comment: 23 pages, 1 figure, standard latex. J. Phys. A, accepted for
publicatio
Particle production and equilibrium properties within a new hadron transport approach for heavy-ion collisions
The microscopic description of heavy-ion reactions at low beam energies is
achieved within hadronic transport approaches. In this article a new approach
SMASH (Simulating Many Accelerated Strongly-interacting Hadrons) is introduced
and applied to study the production of non-strange particles in heavy-ion
reactions at GeV. First, the model is described including
details about the collision criterion, the initial conditions and the resonance
formation and decays. To validate the approach, equilibrium properties such as
detailed balance are presented and the results are compared to experimental
data for elementary cross sections. Finally results for pion and proton
production in C+C and Au+Au collisions is confronted with HADES and FOPI data.
Predictions for particle production in collisions are made.Comment: 30 pages, 30 figures, replaced with published version; only minor
change
Attention-deficit/hyperactivity disorder symptoms are associated with overeating with and without loss of control in youth with overweight/obesity
- …
