963 research outputs found
Research on applied bioelectrochemistry First quarterly progress report, 14 Mar. - 30 Jun. 1963
Optimum use of human waste as electrochemical fuels by urea bacterial organism conversion
Red and orange laser operation of Pr:KYF4 pumped by a Nd:YAG/LBO laser at 469.1nm and a InGaN laser diode at 444nm
We report the basic luminescence properties and the continuous-wave (CW) laser operation of a Pr3+-doped KYF4 single crystal in the Red and Orange spectral regions by using a new pumping scheme. The pump source is an especially developed, compact, slightly tunable and intra-cavity frequency-doubled diode-pumped Nd:YAG laser delivering a CW output power up to about 1.4 W around 469.1 nm. At this pump wavelength, red and orange laser emissions are obtained at about 642.3 and 605.5 nm, with maximum output powers of 11.3 and 1 mW and associated slope efficiencies of 9.3% and 3.4%, with respect to absorbed pump powers, respectively. For comparison, the Pr:KYF4 crystal is also pumped by a InGaN blue laser diode operating around 444 nm. In this case, the same red and orange lasers are obtained, but with maximum output powers of 7.8 and 2 mW and the associated slope efficiencies of 7 and 5.8%, respectively. Wavelength tuning for the two lasers is demonstrated by slightly tilting the crystal. Orange laser operation and laser wavelength tuning are reported for the first time
Density-functional studies of tungsten trioxide, tungsten bronzes, and related systems
Tungsten trioxide adopts a variety of structures which can be intercalated
with charged species to alter the electronic properties, thus forming `tungsten
bronzes'. Similar optical effects are observed upon removing oxygen from WO_3,
although the electronic properties are slightly different. Here we present a
computational study of cubic and hexagonal alkali bronzes and examine the
effects on cell size and band structure as the size of the intercalated ion is
increased. With the exception of hydrogen (which is predicted to be unstable as
an intercalate), the behaviour of the bronzes are relatively consistent. NaWO_3
is the most stable of the cubic systems, although in the hexagonal system the
larger ions are more stable. The band structures are identical, with the
intercalated atom donating its single electron to the tungsten 5d valence band.
Next, this was extended to a study of fractional doping in the Na_xWO_3 system
(0 < x < 1). A linear variation in cell parameter, and a systematic change in
the position of the Fermi level up into the valence band was observed with
increasing x. In the underdoped WO_3-x system however, the Fermi level
undergoes a sudden jump into the conduction band at around x = 0.2. Lastly,
three compounds of a layered WO_4×a,wdiaminoalkane hybrid series were
studied and found to be insulating, with features in the band structure similar
to those of the parent WO_3 compound which relate well to experimental
UV-visible spectroscopy results.Comment: 12 pages, 16 figure
On stability of the three-dimensional fixed point in a model with three coupling constants from the expansion: Three-loop results
The structure of the renormalization-group flows in a model with three
quartic coupling constants is studied within the -expansion method up
to three-loop order. Twofold degeneracy of the eigenvalue exponents for the
three-dimensionally stable fixed point is observed and the possibility for
powers in to appear in the series is investigated.
Reliability and effectiveness of the -expansion method for the given
model is discussed.Comment: 14 pages, LaTeX, no figures. To be published in Phys. Rev. B, V.57
(1998
Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory
In quantum teleportation, the state of a single quantum system is disembodied
into classical information and purely quantum correlations, to be later
reconstructed onto a second system that has never directly interacted with the
first one. This counterintuitive phenomenon is a cornerstone of quantum
information science due to its essential role in several important tasks such
as the long-distance transmission of quantum information using quantum
repeaters. In this context, a challenge of paramount importance is the
distribution of entanglement between remote nodes, and to use this entanglement
as a resource for long-distance light-to-matter quantum teleportation. Here we
demonstrate quantum teleportation of the polarization state of a
telecom-wavelength photon onto the state of a solid-state quantum memory.
Entanglement is established between a rare-earth-ion doped crystal storing a
single photon that is polarization-entangled with a flying telecom-wavelength
photon. The latter is jointly measured with another flying qubit carrying the
polarization state to be teleported, which heralds the teleportation. The
fidelity of the polarization state of the photon retrieved from the memory is
shown to be greater than the maximum fidelity achievable without entanglement,
even when the combined distances travelled by the two flying qubits is 25 km of
standard optical fibre. This light-to-matter teleportation channel paves the
way towards long-distance implementations of quantum networks with solid-state
quantum memories.Comment: 5 pages (main text) + appendix (10 pages
Narrow inhomogeneous and homogeneous optical linewidths in a rare earth doped transparent ceramic
Inhomogeneous and homogeneous linewidth are reported in a Eu3+ doped transparent Y2O3 ceramic for the 7F 0-5D0 transition, using high-resolution coherent spectroscopy. The 8.7-GHz inhomogeneous linewidth is close to that of single crystals, as is the 59-kHz homogeneous linewidth at 3 K (T2 = 5.4 μs). The homogeneous linewidth exhibits a temperature dependence that is typical of a crystalline environment, and additional dephasing observed in the ceramic is attributed to magnetic impurities or defects introduced during the synthesis process. The absence of Eu3+segregation at the grain boundaries, evidenced through confocal microfluorescence, further indicates that the majority of Eu3+ions in the ceramic experience an environment comparable to a single crystal. The obtained results suggest that ceramic materials can be competitive with single crystals for applications in quantum information and spectral hole burning devices, beyond their current applications in lasers and scintillatorsThis work was supported by National Science Foundation under award No. PHY-1212462, the European Union FP7 project QuRep (247743), the Spanish Ministry of Economy
and Competitiveness (MAT2010-17443) and Comunidad de Madrid (S-2009/MAT-1756
Quench Induced Vortices in the Symmetry Broken Phase of Liquid He
Motivated by the study of cosmological phase transitions, our understanding
of the formation of topological defects during spontaneous symmetry-breaking
and the associated non-equilibrium field theory has recently changed.
Experiments have been performed in superfluid He to test the new ideas
involved. In particular, it has been observed that a vortex density is seen
immediately after pressure quenches from just below the transition.
We discuss possible interpretations of these vortices, conclude they are
consistent with our ideas of vortex formation and propose a modification of the
original experiments.Comment: 29 pages, RevTeX with one EPS figur
Towards an eficient atomic frequency comb quantum memory
We present an efficient photon-echo experiment based on atomic frequency
combs [Phys. Rev. A 79, 052329 (2009)]. Echoes containing an energy of up to
35% of that of the input pulse are observed in a Pr3+-doped Y2SiO5 crystal.
This material allows for the precise spectral holeburning needed to make a
sharp and highly absorbing comb structure. We compare our results with a simple
theoretical model with satisfactory agreement. Our results show that atomic
frequency combs has the potential for high-efficiency storage of single photons
as required in future long-distance communication based on quantum repeaters.Comment: 10 pages, 5 figure
- …
