316 research outputs found

    Hubble space telescope STIS spectroscopy of the peculiar nova-like variables BK Lyn, V751 Cygni, and V380 Oph

    Get PDF
    We obtained Hubble STIS spectra of three nova-like variables: V751 Cygni, V380 Oph, and—the only confirmed nova-like variable known to be below the period gap—BK Lyn. In all three systems, the spectra were taken during high optical brightness state, and a luminous accretion disk dominates their far-ultraviolet (FUV) light. We assessed a lower limit of the distances by applying the infrared photometric method of Knigge. Within the limitations imposed by the poorly known system parameters (such as the inclination, white dwarf mass, and the applicability of steady state accretion disks) we obtained satisfactory fits to BK Lyn using optically thick accretion disk models with an accretion rate of for a white dwarf mass of Mwd = 1.2M and for Mwd = 0.4M. However, for the VY Scl-type nova-like variable V751 Cygni and for the SW Sex star V380 Oph, we are unable to obtain satisfactory synthetic spectral fits to the high state FUV spectra using optically thick steady state accretion disk models. The lack of FUV spectra information down to the Lyman limit hinders the extraction of information about the accreting white dwarf during the high states of these nova-like systems

    Experimental models of disseminated scedosporiosis with cerebral involvement

    Get PDF
    Scedosporium apiospermum is a soil fungus which can cause severe and often fatal cerebral infections in both immunocompetent patients in the event of near drowning and immunosuppressed patients such as lung transplant recipients. Because of the low susceptibility of this fungus to antifungal drugs, and the low permeability of the blood-brain barrier (BBB), therapeutic drug monitoring is necessary to reach an effective tissue concentration with limited side effects. Indeed, diffusion of the drug in the brain is dependent on several parameters, such as the integrity of the BBB and the activity of efflux pumps. To evaluate drug diffusion, two experimental models were developed in immunocompetent and immunosuppressed rats. Inocula were administered via the penile vein and a clinical scale (0-9) was established, based on weight and clinical and neurologic signs evaluated by the tail suspension test. Cerebral involvement was confirmed by magnetic resonance imaging and histologic examination of brain sections after hematoxylin-eosin-safran or silver staining. Voriconazole or posaconazole was given to the rats at doses ranging from 10 to 75 mg/kg/day via i.v. or oral routes, respectively. Whatever the immune status, the effective doses (defined by a doubling of the survival time and the absence of neurologic sequelae) were 30 mg/kg/day for voriconazole and 50 mg/kg/day for posaconazole. Overall, the results demonstrated that these models may constitute valuable tools for the performance of pharmacokinetic and pharmacodynamic studies for pharmacokinetic-pharmacodynamic modeling

    Vortex migration in protoplanetary disks

    Full text link
    We consider the radial migration of vortices in two-dimensional isothermal gaseous disks. We find that a vortex core, orbiting at the local gas velocity, induces velocity perturbations that propagate away from the vortex as density waves. The resulting spiral wave pattern is reminiscent of an embedded planet. There are two main causes for asymmetries in these wakes: geometrical effects tend to favor the outer wave, while a radial vortensity gradient leads to an asymmetric vortex core, which favors the wave at the side that has the lowest density. In the case of asymmetric waves, which we always find except for a disk of constant pressure, there is a net exchange of angular momentum between the vortex and the surrounding disk, which leads to orbital migration of the vortex. Numerical hydrodynamical simulations show that this migration can be very rapid, on a time scale of a few thousand orbits, for vortices with a size comparable to the scale height of the disk. We discuss the possible effects of vortex migration on planet formation scenarios.Comment: 13 pages, 13 figures, accepted for publication in Ap

    Platelet inhibition by low-dose aspirin but not by clopidogrel reduces the axon-reflex current-induced vasodilation in humans

    Get PDF
    We previously showed a prolonged inhibition of current-induced vasodilation (CIV) after a single oral high dose of aspirin. In this study, we tested the hypothesis of platelet involvement in CIV. Nine healthy volunteers took 75 mg aspirin/day, 98 mg of clopidogrel bisulfate/day, or placebo for 4 days. CIV was induced by two consecutive 1-min anodal current applications (0.08 mA/cm2) through deionized water with a 10-min interval. CIV was measured with laser Doppler flowmetry and expressed as a percentage of baseline cutaneous vascular conductance: %Cb. In a second experiment in 10 volunteers, aspirin and placebo were given as in experiment 1, but a 26-h delay from the last aspirin intake elapsed before ACh iontophoresis and postocclusive hyperemia were studied in parallel to CIV. In experiment 1, the means ± SE amplitude of CIV was 822 ± 314, 313 ± 144, and 746 ± 397%Cb with placebo, aspirin (P < 0.05 from placebo and clopidogrel), and clopidogrel (NS from placebo), respectively. In experiment 2, CIV impairment with aspirin was confirmed: CIV amplitudes were 300 ± 99, and 916 ± 528%Cb under aspirin and placebo, respectively (P < 0.05), whereas vasodilation to ACh iontophoresis (322 ± 74 and 365 ± 104%Cb) and peak postocclusive hyperemia (491 ± 137 and 661 ± 248%Cb) were not different between aspirin and placebo, respectively. Low-dose aspirin, even 26 h after oral administration, impairs CIV, while ACh-mediated vasodilation and postocclusive hyperemia are preserved. If platelets are involved in the neurovascular mechanism triggered by galvanic current application in humans, it is likely to occur through the cyclooxygenase but not the ADP pathway. a significant increase in skin blood flow (SkBF) has been observed in response to non-noxious galvanic current application in humans. This current-induced vasodilation (CIV) has been described as the result of an axon reflex (3) and disappears in locally anesthetized or chronically capsaicin-treated skin. Then CIV depends on capsaicin-sensitive fibers and is an interesting model of the neurovascular interaction following non-noxious stimulation (11, 16). Prostaglandins are synthesized by cyclooxygenases (COX) and play a key role as mediators in the vascular response observed during CIV. COX are expressed in a large variety of human tissues, including endothelium, smooth muscles, nerves, and platelets (29). We recently reported a long-lasting inhibition of CIV (>5 days) following a single high (1,000 mg) oral dose of aspirin (11, 12, 40), which irreversibly blocks both isoforms of COX (COX-1 and COX-2). COX of neuronal origin does not seem responsible for this long-lasting effect (13). This long-lasting inhibition of CIV is consistent with the time required to resynthesize unblocked platelets after oral single-dose aspirin leading to the hypothesis that platelets participate in the vascular response to CIV. Indeed, a single oral high dose of aspirin irreversibly inactivates the platelet COX pathway for the duration of the life of the platelets (∼10 days) (1, 36). Indomethacin, a nonspecific COX inhibitor devoid of effect on vanilloid receptors and acid-sensing ion channels (41), abolished CIV, confirming that the inhibition of CIV by aspirin likely resulted from its effect on COX (and not on vanilloid receptors or on acid-sensing ion channels). Furthermore, the specific COX-2 inhibitor, celecoxib, failed to affect CIV, suggesting that CIV is mainly a COX-1-dependent phenomenon (39). Together, with the long-lasting effect of a single oral high dose of aspirin, the fact that COX-1 isoform participates in CIV raises the question of a possible platelet involvement in the axon-reflex CIV. Although there is, to date, no in vivo proof of a direct platelet-mediated vasodilation in humans, the hypothesis of a platelet involvement in axon-reflex vasodilation and other vasodilator mechanisms has previously been explored in vitro (15, 23, 31). Those authors provided evidence for a direct in vitro platelet-mediated endothelium-dependent vasodilation in preconstricted arteries but mainly by the ADP pathway. To investigate whether the platelet COX and ADP pathways are involved in vivo in CIV, we inhibited platelet function by aspirin (a platelet COX inhibitor) or clopidogrel (a platelet ADP-receptor inhibitor). Our hypothesis was that if platelets are involved, both clopidogrel and low-dose aspirin would impair the current-induced vasodilation

    Far Ultraviolet Observations of the Dwarf Nova VW Hyi in Quiescence

    Full text link
    We present a 904-1183 A spectrum of the dwarf nova VW Hydri taken with the Far Ultraviolet Spectroscopic Explorer during quiescence, eleven days after a normal outburst, when the underlying white dwarf accreter is clearly exposed in the far ultraviolet. However, model fitting show that a uniform temperature white dwarf does not reproduce the overall spectrum, especially at the shortest wavelengths. A better approximation to the spectrum is obtained with a model consisting of a white dwarf and a rapidly rotating ``accretion belt''. The white dwarf component accounts for 83% of the total flux, has a temperature of 23,000K, a v sin i = 400 km/s, and a low carbon abundance. The best-fit accretion belt component accounts for 17% of the total flux, has a temperature of about 48,000-50,000K, and a rotation rate Vrot sin i around 3,000-4,000 km/s. The requirement of two components in the modeling of the spectrum of VW Hyi in quiescence helps to resolve some of the differences in interpretation of ultraviolet spectra of VW Hyi in quiescence. However, the physical existence of a second component (and its exact nature) in VW Hyi itself is still relatively uncertain, given the lack of better models for spectra of the inner disk in a quiescent dwarf nova.Comment: 6 figures, 10 printed page in the journal, to appear in APJ, 1 Sept. 2004 issue, vol. 61

    Impact of infection status and cyclosporine on voriconazole pharmacokinetics in an experimental model of cerebral scedosporiosis

    Get PDF
    Cerebral Scedosporium infections usually occur in lung transplant recipients as well as in immunocompetent patients in the context of near-drowning. Voriconazole is the first-line treatment. The diffusion of voriconazole through the blood-brain barriers in the context of cerebral infection and cyclosporine administration is crucial and remains a matter of debate. To address this issue, the pharmacokinetics of voriconazole were assessed in the plasma, cerebrospinal fluid (CSF), and brain, in an experimental model of cerebral scedosporiosis in rats receiving or not cyclosporine. A single dose of voriconazole (30 mg/kg, i.v.) was administrated to six groups of rats randomized according to the infection status and the cyclosporine dosing regimen (no cyclosporine, a single dose or three doses 15 mg/kg each). Voriconazole concentrations in plasma, CSF, and brain samples were quantified using UPLC-MS/MS and HPLC-UV methods and documented up to 48 hours after administration. Pharmacokinetic parameters were estimated using a non-compartmental approach. Voriconazole pharmacokinetic profiles were similar for plasma, CSF, and the brain in all groups studied. Voriconazole Cmax and AUC0=>48h were significantly higher in the plasma than in the CSF (CSF/plasma ratio, median [range] = 0.5 [0.39-0.55] for AUC0=>48h and 0.47 [0.35 and 0.75] for Cmax). Cyclosporine administration was significantly associated with an increase in voriconazole exposure in the plasma, CSF, and brain. In the plasma but not in the brain, an interaction between the infection and cyclosporine administration reduced the positive impact of cyclosporine on voriconazole exposure. Together these results emphasize the impact of cyclosporine on the brain voriconazole exposure
    • …
    corecore