2,351 research outputs found
Lewis through a looking glass : public sector employment, rent-seeking, and economic growth
This paper argues that the labor transfer process outlined by the Lewis model (1954) can give rise to surplus labour - in the sense than the marginal product of labour is less that the wage - in the public part of the modern sector and that this may deprive the modern sector of its dynamism. Moreover, creating sheltered employment tends to be self-perpetuating. It creates and consolidates vested interests that seek to perpetuate the protected jobs. In the inverse of the Lewis model, the extent of surplus labour increases, rather than diminishes, over time.Environmental Economics&Policies,Banks&Banking Reform,Economic Theory&Research,Public Sector Economics&Finance,Health Monitoring&Evaluation
Quenching of lamellar ordering in an n-alkane embedded in nanopores
We present an X-ray diffraction study of the normale alkane nonadecane
C_{19}H_{40} embedded in nanoporous Vycor glass. The confined molecular crystal
accomplishes a close-packed structure by alignment of the rod-like molecules
parallel to the pore axis while sacrificing one basic principle known from the
bulk state, i.e. the lamellar ordering of the molecules. Despite this disorder,
the phase transitions observed in the confined solid mimic the phase behavior
of the 3D unconfined crystal, though enriched by the appearance of a true
rotator phase known only from longer alkane chains.Comment: 7 pages, 3 figure
Perioperative Hypothermia (33°C) Does Not Increase theOccurrence of Cardiovascular Events in PatientsUndergoing Cerebral Aneurysm SurgeryFindings from the Intraoperative Hypothermia for AneurysmSurgery Trial
The IHAST Trial randomized patients undergoing cerebral aneurysm surgery to intraoperative hypothermia or normothermia.
Cardiovascular events were prospectively
followed until 3-month follow-up and were compared in
hypothermic and normothermic patients.
Conclusion: In patients undergoing cerebral aneurysm surgery,
perioperative hypothermia was not associated with an
increased occurrence of cardiovascular events
Soft disks in a narrow channel
The pressure components of "soft" disks in a two dimensional narrow channel
are analyzed in the dilute gas regime using the Mayer cluster expansion and
molecular dynamics. Channels with either periodic or reflecting boundaries are
considered. It is found that when the two-body potential, u(r), is singular at
some distance r_0, the dependence of the pressure components on the channel
width exhibits a singularity at one or more channel widths which are simply
related to r_0. In channels with periodic boundary conditions and for
potentials which are discontinuous at r_0, the transverse and longitudinal
pressure components exhibit a 1/2 and 3/2 singularity, respectively. Continuous
potentials with a power law singularity result in weaker singularities of the
pressure components. In channels with reflecting boundary conditions the
singularities are found to be weaker than those corresponding to periodic
boundaries
Back reaction of a long range force on a Friedmann-Robertson-Walker background
It is possible that there may exist long-range forces in addition to gravity.
In this paper we construct a simple model for such a force based on exchange of
a massless scalar field and analyze its effect on the evolution of a
homogeneous Friedmann-Robertson-Walker cosmology. The presence of such an
interaction leads to an equation of state characterized by positive pressure
and to resonant particle production similar to that observed in preheating
scenarios.Comment: 14 pages, 6 color Postscript figures, LaTe
A temperature-controlled device for volumetric measurements of Helium adsorption in porous media
We describe a set-up for studying adsorption of helium in silica aerogels,
where the adsorbed amount is easily and precisely controlled by varying the
temperature of a gas reservoir between 80 K and 180 K. We present validation
experiments and a first application to aerogels. This device is well adapted to
study hysteresis, relaxation, and metastable states in the adsorption and
desorption of fluids in porous media
Wetting of a symmetrical binary fluid mixture on a wall
We study the wetting behaviour of a symmetrical binary fluid below the
demixing temperature at a non-selective attractive wall. Although it demixes in
the bulk, a sufficiently thin liquid film remains mixed. On approaching
liquid/vapour coexistence, however, the thickness of the liquid film increases
and it may demix and then wet the substrate. We show that the wetting
properties are determined by an interplay of the two length scales related to
the density and the composition fluctuations. The problem is analysed within
the framework of a generic two component Ginzburg-Landau functional
(appropriate for systems with short-ranged interactions). This functional is
minimized both numerically and analytically within a piecewise parabolic
potential approximation. A number of novel surface transitions are found,
including first order demixing and prewetting, continuous demixing, a
tricritical point connecting the two regimes, or a critical end point beyond
which the prewetting line separates a strongly and a weakly demixed film. Our
results are supported by detailed Monte Carlo simulations of a symmetrical
binary Lennard-Jones fluid at an attractive wall.Comment: submitted to Phys. Rev.
Fast Ensemble Smoothing
Smoothing is essential to many oceanographic, meteorological and hydrological
applications. The interval smoothing problem updates all desired states within
a time interval using all available observations. The fixed-lag smoothing
problem updates only a fixed number of states prior to the observation at
current time. The fixed-lag smoothing problem is, in general, thought to be
computationally faster than a fixed-interval smoother, and can be an
appropriate approximation for long interval-smoothing problems. In this paper,
we use an ensemble-based approach to fixed-interval and fixed-lag smoothing,
and synthesize two algorithms. The first algorithm produces a linear time
solution to the interval smoothing problem with a fixed factor, and the second
one produces a fixed-lag solution that is independent of the lag length.
Identical-twin experiments conducted with the Lorenz-95 model show that for lag
lengths approximately equal to the error doubling time, or for long intervals
the proposed methods can provide significant computational savings. These
results suggest that ensemble methods yield both fixed-interval and fixed-lag
smoothing solutions that cost little additional effort over filtering and model
propagation, in the sense that in practical ensemble application the additional
increment is a small fraction of either filtering or model propagation costs.
We also show that fixed-interval smoothing can perform as fast as fixed-lag
smoothing and may be advantageous when memory is not an issue
Recommended from our members
EM-mosaic detects mosaic point mutations that contribute to congenital heart disease.
BackgroundThe contribution of somatic mosaicism, or genetic mutations arising after oocyte fertilization, to congenital heart disease (CHD) is not well understood. Further, the relationship between mosaicism in blood and cardiovascular tissue has not been determined.MethodsWe developed a new computational method, EM-mosaic (Expectation-Maximization-based detection of mosaicism), to analyze mosaicism in exome sequences derived primarily from blood DNA of 2530 CHD proband-parent trios. To optimize this method, we measured mosaic detection power as a function of sequencing depth. In parallel, we analyzed our cohort using MosaicHunter, a Bayesian genotyping algorithm-based mosaic detection tool, and compared the two methods. The accuracy of these mosaic variant detection algorithms was assessed using an independent resequencing method. We then applied both methods to detect mosaicism in cardiac tissue-derived exome sequences of 66 participants for which matched blood and heart tissue was available.ResultsEM-mosaic detected 326 mosaic mutations in blood and/or cardiac tissue DNA. Of the 309 detected in blood DNA, 85/97 (88%) tested were independently confirmed, while 7/17 (41%) candidates of 17 detected in cardiac tissue were confirmed. MosaicHunter detected an additional 64 mosaics, of which 23/46 (50%) among 58 candidates from blood and 4/6 (67%) of 6 candidates from cardiac tissue confirmed. Twenty-five mosaic variants altered CHD-risk genes, affecting 1% of our cohort. Of these 25, 22/22 candidates tested were confirmed. Variants predicted as damaging had higher variant allele fraction than benign variants, suggesting a role in CHD. The estimated true frequency of mosaic variants above 10% mosaicism was 0.14/person in blood and 0.21/person in cardiac tissue. Analysis of 66 individuals with matched cardiac tissue available revealed both tissue-specific and shared mosaicism, with shared mosaics generally having higher allele fraction.ConclusionsWe estimate that ~ 1% of CHD probands have a mosaic variant detectable in blood that could contribute to cardiac malformations, particularly those damaging variants with relatively higher allele fraction. Although blood is a readily available DNA source, cardiac tissues analyzed contributed ~ 5% of somatic mosaic variants identified, indicating the value of tissue mosaicism analyses
- …
