6,417 research outputs found

    Digital modulation of the nickel valence state in a cuprate-nickelate heterostructure

    Full text link
    Layer-by-layer oxide molecular beam epitaxy has been used to synthesize cuprate-nickelate multilayer structures of composition (La2_2CuO4_4)m_m/LaO/(LaNiO3_3)n_n. In a combined experimental and theoretical study, we show that these structures allow a clean separation of dopant and doped layers. Specifically, the LaO layer separating cuprate and nickelate blocks provides an additional charge that, according to density functional theory calculations, is predominantly accommodated in the interfacial nickelate layers. This is reflected in an elongation of bond distances and changes in valence state, as observed by scanning transmission electron microscopy and x-ray absorption spectroscopy. Moreover, the predicted charge disproportionation in the nickelate interface layers leads to a thickness-dependent metal-to-insulator transition for n=2n=2, as observed in electrical transport measurements. The results exemplify the perspectives of charge transfer in metal-oxide multilayers to induce doping without introducing chemical and structural disorder

    Chemical analysis of NGC 6528: one of the most metal-rich bulge globular cluster

    Full text link
    The Bulge Globular Clusters (GCs) are key tracers of this central ancient component of our Galaxy. It is essential to understand their formation and evolution to study that of the bulge, as well as their relationship with the other Galactic GC systems (halo and disk GCs). Our main goals are to obtain detailed abundances for a sample of seven red giant members of NGC 6528 in order to characterize its chemical composition and study the relationship of this GC with the bulge, and with other bulge, halo and disk GCs. Moreover, we analyze this cluster's behavior associated with the Multiple Populations (MPs) phenomenon. We obtained the stellar parameters and chemical abundances of light elements (Na, Al), iron-peak elements (V, Cr, Mn, Fe, Co, Ni, Cu), {\alpha}-elements (O, Mg, Si, Ca, Ti) and heavy elements (Zr, Ba, Eu) in seven red giant members of NGC 6528 using high resolution spectroscopy from FLAMES-UVES. We obtained in six stars of our sample a mean iron content of [Fe/H]=-0.14+/-0.03 dex, in good agreement with other studies. We found no significant internal iron spread. We detected one candidate variable star, which was excluded from the mean in iron content, we derived a metallicity in this star of [Fe/H]=-0.55+/-0.04 dex. Moreover, we found no extended O-Na anticorrelation but instead only an intrinsic Na spread. In addition, NGC 6528 does not exhibit a Mg-Al anticorrelation, and no significant spread in either Mg or Al. The {\alpha} and iron-peak elements show good agreement with the bulge field star trend. The heavy elements are slightly dominated by the r-process. The chemical analysis suggests an origin and evolution similar to that of typical old Bulge field stars. Finally, we find remarkable agreement in the chemical patterns of NGC 6528 and another bulge GC, NGC 6553, suggesting a similar origin and evolution.Comment: Accepted for publication in A&A. 12 pages, 13 figures, 4 table

    The peculiar Na-O anticorrelation of the bulge globular cluster NGC 6440

    Full text link
    Context. Galactic Globular Clusters (GCs) are essential tools to understand the earliest epoch of the Milky Way, since they are among the oldest objects in the Universe and can be used to trace its formation and evolution. Current studies using high resolution spectroscopy for many stars in each of a large sample of GCs allow us to develop a detailed observational picture about their formation and their relation with the Galaxy. However, it is necessary to complete this picture by including GCs that belong to all major Galactic components, including the Bulge. Aims. Our aim is to perform a detailed chemical analyses of the bulge GC NGC 6440 in order to determine if this object has Multiple Populations (MPs) and investigate its relation with the Bulge of the Milky Way and with the other Galactic GCs, especially those associated with the Bulge, which are largely poorly studied. Methods. We determined the stellar parameters and the chemical abundances of light elements (Na, Al), iron-peak elements (Fe, Sc, Mn, Co, Ni), α\alpha-elements (O, Mg, Si, Ca, Ti) and heavy elements (Ba, Eu) in seven red giant members of NGC 6440 using high resolution spectroscopy from FLAMES@UVES. Results. We found a mean iron content of [Fe/H]=-0.50±\pm0.03 dex in agreement with other studies. We found no internal iron spread. On the other hand, Na and Al show a significant intrinsic spread, but the cluster has no significant O-Na anticorrelation nor exhibits a Mg-Al anticorrelation. The α\alpha-elements show good agreement with the Bulge field star trend, although they are at the high alpha end and are also higher than those of other GCs of comparable metallicity. The heavy elements are dominated by the r-process, indicating a strong contribution by SNeII. The chemical analysis suggests an origin similar to that of the Bulge field stars.Comment: 12 pages, 13 figures, Accepted for publication in A&

    Ultra-deep GEMINI near-infrared observations of the bulge globular cluster NGC 6624

    Get PDF
    We used ultra-deep JJ and KsK_s images secured with the near-infrared GSAOI camera assisted by the multi-conjugate adaptive optics system GeMS at the GEMINI South Telescope in Chile, to obtain a (KsK_s, JKsJ-K_s) color-magnitude diagram (CMD) for the bulge globular cluster NGC 6624. We obtained the deepest and most accurate near-infrared CMD from the ground for this cluster, by reaching KsK_s \sim 21.5, approximately 8 magnitudes below the horizontal branch level. The entire extension of the Main Sequence (MS) is nicely sampled and at KsK_s \sim 20 we detected the so-called MS "knee" in a purely near-infrared CMD. By taking advantage of the exquisite quality of the data, we estimated the absolute age of NGC 6624 (taget_{age} = 12.0 ±\pm 0.5 Gyr), which turns out to be in good agreement with previous studies in the literature. We also analyzed the luminosity and mass functions of MS stars down to M \sim 0.45 M_{\odot} finding evidence of a significant increase of low-mass stars at increasing distances from the cluster center. This is a clear signature of mass segregation, confirming that NGC 6624 is in an advanced stage of dynamical evolution.Comment: Accepted for publication by ApJ. 39 pages, 19 figures, 1 tabl

    Globular Cluster Systems in Brightest Cluster Galaxies. III: Beyond Bimodality

    Full text link
    We present new deep photometry of the rich globular cluster (GC) systems around the Brightest Cluster Galaxies UGC 9799 (Abell 2052) and UGC 10143 (Abell 2147), obtained with the HST ACS and WFC3 cameras. For comparison, we also present new reductions of similar HST/ACS data for the Coma supergiants NGC 4874 and 4889. All four of these galaxies have huge cluster populations (to the radial limits of our data, comprising from 12000 to 23000 clusters per galaxy). The metallicity distribution functions (MDFs) of the GCs can still be matched by a bimodal-Gaussian form where the metal-rich and metal-poor modes are separated by ~0.8 dex, but the internal dispersions of each mode are so large that the total MDF becomes very broad and nearly continuous from [Fe/H] = -2.4 to Solar. There are, however, significant differences between galaxies in the relative numbers of \emph{metal-rich} clusters, suggesting that they underwent significantly different histories of mergers with massive, gas-rich halos. Lastly, the proportion of metal-poor GCs rises especially rapidly outside projected radii R > 4 R_eff, suggesting the importance of accreted dwarf satellites in the outer halo. Comprehensive models for the formation of GCs as part of the hierarchical formation of their parent galaxies will be needed to trace the systematic change in structure of the MDF with galaxy mass, from the distinctly bimodal form in smaller galaxies up to the broad continuum that we see in the very largest systems.Comment: In press for Astrophysical Journa

    A New Giant Branch Clump Structure In the Large Magellanic Cloud

    Get PDF
    We present Washington C, T1 CCD photometry of 21 fields located in the northern part of the Large Magellanic Cloud (LMC), and spread over a region of more than 2.52 degrees approximately 6 degrees from the bar. The surveyed areas were chosen on the basis of their proximity to SL 388 and SL 509, whose fields showed the presence of a secondary giant clump, observationally detected by Bica et al. (1998, AJ, 116, 723). From the collected data we found that most of the observed field CMDs do not show a separate secondary clump, but rather a continuous vertical structure (VS), which is clearly seen for the first time. Its position and size are nearly the same throughout the surveyed regions: it lies below the Red Giant Clump (RGC) and extends from the bottom of the RGC to approximately 0.45 mag fainter, spanning the bluest color range of the RGC. The more numerous the VS stars in a field, the larger the number of LMC giants in the same zone. Our analysis demonstrate that VS stars belong to the LMC and are most likely the consequence of some kind of evolutionary process in the LMC, particularly in those LMC regions with a noticeable large giant population. Our results suggest that in order to trigger the formation of VS stars, there should be other conditions besides the appropriate age, metallicity, and the necessary red giant star density. Indeed, stars satisfying the requisites mentioned above are commonly found throughout the LMC, but the VS phenomenon is only clearly seen in some isolated regions. Finally, the fact that clump stars have an intrinsic luminosity dispersion further constrains the use of the clump magnitude as a reliable distance indicator.Comment: 25 pages, 9 figures, 3 tables; to be published in AJ, Dec. issu

    Statistics of Stellar Populations of Star Clusters and Surrounding Fields in the Outer Disk of the Large Magellanic Cloud

    Get PDF
    A comparative analysis of Washington color-magnitude diagrams (CMDs) for 14 star clusters and respective surrounding fields in the Large Magellanic Cloud (LMC) outer disk is presented. Each CCD frame including field and respective cluster covers an area of 185 arcmin^2. The stellar population sampled is of intermediate age and metallicity. CMD radial analysis involving star count ratios, morphology and integrated light properties are carried out. Luminosity functions (LFs) are also presented. Two main results are: (i) Within the range 4<R(kpc)<8, the distance from the LMC center is well correlated with the average age in the sense that inner fields are younger and; (ii) Beyond approximately 8kpc the outer fields do not show evidence of a significant intermediate-age component in their stellar populations, as inferred from red giant clump star counts.Comment: 27 pages, 4 tables, 11 figures; accepted by the A
    corecore