1,876 research outputs found

    Knowledge-based Model Building with KONWERK

    Get PDF
    Modeling a real world optimization problem in a form which can be processed by a machine (computer) is usually a very difficult and complex task. Therefore, building and verifying the model is often the most time consuming part of the whole process of solving a real world problem using methods of Operations Research. Software tools, which integrate representation methods developed in the field of Artificial Intelligence (AI) and methods of OR, can facilitate and speed up the process of model development. The paper introduces the idea of knowledge based modeling as a model development and representation technique facilitating the complex process of model building. We describe the KONWERK tool-box which combines hierarchical structured knowledge representation and object oriented methodology thus providing a framework for model building and application of different optimization methods. We want the reader to form an idea of the methodology of model development and knowledge representation with KONWERK and to understand the hierarchical structure of the knowledge base. The model of the Nitra River Case is used to describe and explain the modeling and knowledge representation with KONWERK. A given multicriteria model of the Nitra River Case was reimplemented using KONWERK within about three weeks and later enlarged by implementation of additional fairness criteria

    Charge and momentum transfer in supercooled melts: Why should their relaxation times differ?

    Full text link
    The steady state values of the viscosity and the intrinsic ionic-conductivity of quenched melts are computed, in terms of independently measurable quantities. The frequency dependence of the ac dielectric response is estimated. The discrepancy between the corresponding characteristic relaxation times is only apparent; it does not imply distinct mechanisms, but stems from the intrinsic barrier distribution for α\alpha-relaxation in supercooled fluids and glasses. This type of intrinsic ``decoupling'' is argued not to exceed four orders in magnitude, for known glassformers. We explain the origin of the discrepancy between the stretching exponent β\beta, as extracted from ϵ(ω)\epsilon(\omega) and the dielectric modulus data. The actual width of the barrier distribution always grows with lowering the temperature. The contrary is an artifact of the large contribution of the dc-conductivity component to the modulus data. The methodology allows one to single out other contributions to the conductivity, as in ``superionic'' liquids or when charge carriers are delocalized, implying that in those systems, charge transfer does not require structural reconfiguration.Comment: submitted to J Chem Phy

    Nitrogen compounds and ozone in the stratosphere: comparison of MIPAS satellite data with the Chemistry Climate Model ECHAM5/MESSy1

    Get PDF
    International audienceThe chemistry climate model ECHAM5/MESSy1 (E5/M1) in a setup extending from the surface to 80 km with a vertical resolution of about 600 m near the tropopause with nudged tropospheric meteorology allows a direct comparison with satellite data of chemical species at the same time and location. Here we present results out of a transient 10 years simulation for the period of the Antarctic vortex split in September 2002, where data of MIPAS on the ENVISAT-satellite are available. For the first time this satellite instrument opens the opportunity, to evaluate all stratospheric nitrogen containing species simultaneously with a good global coverage, including the source gas N2O which allows an estimate for NOx-production in the stratosphere. We show correlations between simulated and observed species in the altitude region between 10 and 50 hpa for different latitude belts, together with the Probability Density Functions (PDFs) of model results and observations. This is supplemented by global charts on pressure levels showing the satellite data and the simulated data sampled at the same time and location. We demonstrate that the model in most cases captures the partitioning in the nitrogen family, the diurnal cycles and the spatial distribution within experimental uncertainty. There appears to be, however, a problem to reproduce the observed nighttime partitioning between N2O5 and NO2 in the middle stratosphere

    Simple Lattice-Models of Ion Conduction: Counter Ion Model vs. Random Energy Model

    Full text link
    The role of Coulomb interaction between the mobile particles in ionic conductors is still under debate. To clarify this aspect we perform Monte Carlo simulations on two simple lattice models (Counter Ion Model and Random Energy Model) which contain Coulomb interaction between the positively charged mobile particles, moving on a static disordered energy landscape. We find that the nature of static disorder plays an important role if one wishes to explore the impact of Coulomb interaction on the microscopic dynamics. This Coulomb type interaction impedes the dynamics in the Random Energy Model, but enhances dynamics in the Counter Ion Model in the relevant parameter range.Comment: To be published in Phys. Rev.

    A proposed architecture for generic and scalable CDR analytics platform utilizing big data technology

    Get PDF
    Telecom Call Details Record (CDR) data-set is considered a rich source of valuable information that will bring new big revenues to Communication Service providers (CSP) as well as it will empower many out-telco services such as transportation, education, health programs, and business analysis in resource management and planning, decision making, and processes optimization. However, extracting these valuable information from raw CDRs with the classical SQL and BI systems is very costly and has poor performance measures. This is due to the big volume of CDR data-set, the high and growing data rate and the large number of fields it contains. Many CDR analytics systems were built using Big Data technology, to overcome the scalability problem of the centralized computing, but the heterogeneity usage of CDR analytics have not been considered; they were built for specific and predetermined use cases. This paper presents a proposed platform architecture for real, near-real time and batch CDR analysis to provide analytics for heterogeneous applications, through designing a high generic and scalable platform. This paper illustrates the platform design consideration along with how the proposed architecture was built. Moreover, it gives a brief functional description and implementation suggestions for each component in the architecture

    Local impact of solar variation on NO2 in the lower mesosphere and upper stratosphere from 2007 to 2012

    Get PDF
    MIPAS/ENVISAT data of nighttime NO2 volume mixing ratios (VMR) from 2007 until 2012 between 40 km and 62 km altitude are compared with the geomagnetic Ap index and solar Lyman-α radiation. The local impact of variations in geomagnetic activity and solar radiation on the VMR of NO 2 in the lower mesosphere and upper stratosphere in the Northern Hemisphere is investigated by means of superposed epoch analysis. Observations in the Northern Hemisphere show a clear 27-day period of the NO2 VMR. This is positively correlated with the geomagnetic Ap index at 60-70° N geomagnetic latitude but also partially correlated with the solar Lyman-α radiation. However, the dependency of NO2 VMR on geomagnetic activity can be distinguished from the impact of solar radiation. This indicates a direct response of NOx (NO + NO2) to geomagnetic activity, probably due to precipitating particles. The response is detected in the range between 46 km and 52 km altitude. The NO2 VMR epoch maxima due to geomagnetic activity is altitude-dependent and can reach up to 0.4 ppb, leading to mean production rates of 0.029 ppb (Ap d)-1. Observations in the Southern Hemisphere do not have the same significance due to a worse sampling of geomagnetic storm occurances. Variabilities due to solar variation occur at the same altitudes at 60-70° S geomagnetic latitude but cannot be analyzed as in the Northern Hemisphere. This is the first study showing the direct impact of electron precipitation on NOx at those altitudes in the spring/summer/autumn hemisphere. © 2014 Author(s).F. Friederich and M. Sinnhuber gratefully acknowledge funding by the Helmholtz Association of German Research Centres (HGF), grant VH-NG-624Peer Reviewe
    corecore