481 research outputs found

    Frauenzirkel auf Erfolgskurs

    Get PDF

    Entomophagy in the area surrounding LuiKotale, Salonga National Park, Democratic Republic of the Congo

    Get PDF
    Recent research has highlighted the importance of edible insects as a protein source in the developed and developing world, both as a traditional food and a more sustainable alternative to conventional livestock. However, there is concern that traditional ecological knowledge (TEK) concerning wild-collected insects is in danger of being lost. The Democratic Republic of the Congo (DRC) is a country that encompasses many diverse cultures, many of which are known to include insects in their dietary repertoire, yet data on TEK related to edible insects across this region is scarce. This study records local knowledge and, where possible, scientific identification of the insects consumed by human communities in the area adjacent to LuiKotale, Salonga National Park. Information was gathered using interviews and first-hand observations. A total of 31 edible insects are identified by their local names, and of these 10 are identified to species level. Collection methods are recorded for seven commonly consumed species. This article contributes to the scarce body of research detailing entomophagy in the DRC

    Presence of Alkaloids and Cyanogenic Glycosides in Fruits Consumed by Sympatric Bonobos and the Nkundo People at LuiKotale/Salonga National Park, Democratic Republic of Congo and Its Relationship to Food Choice

    Get PDF
    The importance of secondary compounds remains poorly studied in wild plants eaten by bonobos (Pan paniscus) and humans. As part of this study, alkaloids and cyanogenic glycosides (cyanide) were investigated in wild fruits consumed by bonobos at LuiKotale in Salonga National Park. In high concentrations, the two components can become toxic. Therefore, we investigated whether the bonobos and the Nkundo people avoid high concentrations of these components in their food. To analyze alkaloids and to detect the presence of cyanogenic glycosides, we used semi-quantitative methods. Of the 75 species of fruit analyzed, 28 species (37%) were revealed to have alkaloids at different proportions and 47 species (63%) were shown to be without alkaloids, 12 species (16%) with low concentrations (+), 14 species (19%) with moderate concentrations (++), and two species (3%) with high concentrations (+++). Of the 75 species, 60 were eaten, of which 46 were consumed only by bonobos, 13 were eaten by both bonobos and the Nkundo people, and one species (Piper guinensis) was eaten only by the Nkundo people. In total, bonobos ate 59 species and the Nkundo people 14 species. Of the 60 species consumed, the majority, i.e., 39 species (65%) did not show the presence of alkaloids, while 11 species (18%) showed a low concentration and 10 species (17%) moderate concentrations. As for cyanogenic glycosides (cyanide), this was detected in only three of the 75 species of fruit analyzed. Two species, Camptostylus mannii and Dasylepsis seretii, belong to the Achariaceae family, with Oncoba welwitschii in the Salicaceae family. The two species of Achariaceae both contain alkaloids and cyanogenic glycosides. No species eaten by the Nkundo contained cyanogenic glycosides. Hence, we infer that bonobos and the Nkundo people both avoid eating fruit species that contain high concentrations of alkaloids and cyanogenic glycosides, and this might have relevance linked to the evolution of seed dispersal

    Unpeeling the layers of language: Bonobos and chimpanzees engage in cooperative turn-taking sequences

    Get PDF
    Human language is a fundamentally cooperative enterprise, embodying fast-paced and extended social interactions. It has been suggested that it evolved as part of a larger adaptation of humans’ species-unique forms of cooperation. Although our closest living relatives, bonobos and chimpanzees, show general cooperative abilities, their communicative interactions seem to lack the cooperative nature of human conversation. Here, we revisited this claim by conducting the first systematic comparison of communicative interactions in mother-infant dyads living in two different communities of bonobos (LuiKotale, DRC; Wamba, DRC) and chimpanzees (Taï South, Côte d’Ivoire; Kanyawara, Uganda) in the wild. Focusing on the communicative function of joint-travel-initiation, we applied parameters of conversation analysis to gestural exchanges between mothers and infants. Results showed that communicative exchanges in both species resemble cooperative turn-taking sequences in human conversation. While bonobos consistently addressed the recipient via gaze before signal initiation and used so-called overlapping responses, chimpanzees engaged in more extended negotiations, involving frequent response waiting and gestural sequences. Our results thus strengthen the hypothesis that interactional intelligence paved the way to the cooperative endeavour of human language and suggest that social matrices highly impact upon communication styles

    Derivative based global sensitivity measures

    Full text link
    The method of derivative based global sensitivity measures (DGSM) has recently become popular among practitioners. It has a strong link with the Morris screening method and Sobol' sensitivity indices and has several advantages over them. DGSM are very easy to implement and evaluate numerically. The computational time required for numerical evaluation of DGSM is generally much lower than that for estimation of Sobol' sensitivity indices. This paper presents a survey of recent advances in DGSM concerning lower and upper bounds on the values of Sobol' total sensitivity indices S_itotS\_{i}^{tot}. Using these bounds it is possible in most cases to get a good practical estimation of the values of S_itotS\_{i}^{tot} . Several examples are used to illustrate an application of DGSM

    Diagnostic assays for leprosy based on T-cell epitopes.

    Get PDF
    To date, only a limited number of antigens have been described as specific for Mycobacterium leprae, and in many cases, homologues have subsequently been shown to exist in mycobacteria such as M. avium and M. intracellulare. A Leprosy Synthetic Peptide Skin Test Initiative was established by the Steering Committee on the Immunology of Mycobacteria of the UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases, to investigate the potential of synthetic peptides that encode T-cell epitopes as diagnostic tools, which could be used to develop a skin-test reagent specific for leprosy. Such M. leprae-specific peptides should have unique amino acid sequences, or significant sequence-dissimilarity from those in other mycobacteria. Synthetic peptides, 15 amino acids long, were synthesised from 33 genes or open reading frames within the M. leprae genome. Tuberculoid leprosy patients from four leprosy-endemic countries, Brazil, Ethiopia, Nepal and Pakistan, were tested as subjects known to have been infected with M. leprae, and to make good T-cell responses to antigens of M. leprae; UK blood donors were used as non-exposed or non-infected subjects. Peptides inducing potentially specific responses in leprosy patients and not in UK controls, and those inducing cross-reaction responses, present in both leprosy patients and non-exposed, non-infected controls, were identified. A difference from the equivalent M. tuberculosis sequence of five or more amino acid residues did not, by itself, identify peptides that were M. leprae-specific, suggesting that many of these peptides may have homologues in environmental mycobacteria. To date, this approach has identified a number of peptides with greater than 90% specificity and 19-47% sensitivity, which are undergoing further specificity-testing. Such peptides would have great potential as T-cell reagents with which to monitor exposure to M. leprae within communities, formulated either as skin-test reagents, or as antigens for tests in vitro

    Food Sharing across Borders

    Get PDF
    Evolutionary models consider hunting and food sharing to be milestones that paved the way from primate to human societies. Because fossil evidence is scarce, hominoid primates serve as referential models to assess our common ancestors’ capacity in terms of communal use of resources, food sharing, and other forms of cooperation. Whereas chimpanzees form male-male bonds exhibiting resource-defense polygyny with intolerance and aggression toward nonresidents, bonobos form male-female and female-female bonds resulting in relaxed relations with neighboring groups. Here we report the first known case of meat sharing between members of two bonobo communities, revealing a new dimension of social tolerance in this species. This observation testifies to the behavioral plasticity that exists in the two Pan species and contributes to scenarios concerning the traits of the last common ancestor of Pan and Homo. It also contributes to the discussion of physiological triggers of in-group/out-group behavior and allows reconsideration of the emergence of social norms in prehuman societies

    Investigating the impact of a long-term research and conservation project on the expansion of land use and land cover in a remote area of central DRC

    Get PDF
    Anthropogenic impact and population growth have caused a dramatic loss of biodiversity worldwide. Deforestation due to logging, mining, and burning are of particular severity in tropical rainforests with the Amazonian and Congolese basins harboring the largest reminders on our planet. While research projects particularly those with permanent presence on ground have been considered as excellent conservation measures to protect habitat and wildlife, no studies are known to assess their negative implications. Here, we assess the impact of a long-term research project on the tropical rainforest in the Democratic Republic of the Congo (DRC). We investigate the LuiKotale Bonobo project (LKBP) established for research and conservation in 2002, closely cooperating with several villages located in the buffer zone of Salonga National Park, Block South, Territoire d'Inongo, Province Mai-Ndombe, DRC. We combine the results of Land Use and Land Cover (LULC) drawn from satellite imagery with population data for four villages comparing anthropogenic impact before and after establishment of the project covering 31 years between 1987 and 2018. While deforestation decreased in Lompole, the first and main village of collaboration, it increased continuously over time in neighboring villages. Increase can be linked to population growth and cash income provided by the LKBP with habitants investing into construction material and expansion of agricultural fields for cash crops
    corecore