107 research outputs found

    Hamstring stretch reflex:could it be a reproducible objective measure of functional knee stability?"

    Get PDF
    Background: The anterior cruciate ligament (ACL) plays an important role in anterior knee stability by preventing anterior translation of the tibia on the femur. Rapid translation of the tibia with respect to the femur produces an ACL-hamstring stretch reflex which may provide an object measure of neuromuscular function following ACL injury or reconstruction. The aim of this study was to determine if the ACL-hamstring stretch reflex could be reliably and consistently obtained using the KT-2000 arthrometer.  Methods: A KT-2000 arthrometer was used to translate the tibia on the femur while recording the electromyography over the biceps femoris muscle in 20 participants, all with intact ACLs. In addition, a sub-group comprising 4 patients undergoing a knee arthroscopy for meniscal pathology, were tested before and after anaesthetic and with direct traction on the ACL during arthroscopy. The remaining 16 participants underwent testing to elicit the reflex using the KT-2000 only.  Results: A total number of 182 trials were performed from which 70 trials elicited stretch reflex (38.5 %). The mean onset latency of the hamstring stretch reflexes was 58.9 ± 17.9 ms. The average pull force was 195 ± 47 N, stretch velocity 48 ± 35 mm/s and rate of force 19.7 ± 6.4 N/s. Conclusions Based on these results, we concluded that the response rate of the anterior cruciate ligament-hamstring reflex is too low for it to be reliably used in a clinical setting, and thus would have limited value in assessing the return of neuromuscular function following ACL injuries

    Assessment of cartilage-dedicated sequences at ultra-high-field MRI: comparison of imaging performance and diagnostic confidence between 3.0 and 7.0 T with respect to osteoarthritis-induced changes at the knee joint

    Get PDF
    The objectives of the study were to optimize three cartilage-dedicated sequences for in vivo knee imaging at 7.0 T ultra-high-field (UHF) magnetic resonance imaging (MRI) and to compare imaging performance and diagnostic confidence concerning osteoarthritis (OA)-induced changes at 7.0 and 3.0 T MRI. Optimized MRI sequences for cartilage imaging at 3.0 T were tailored for 7.0 T: an intermediate-weighted fast spin-echo (IM-w FSE), a fast imaging employing steady-state acquisition (FIESTA) and a T1-weighted 3D high-spatial-resolution volumetric fat-suppressed spoiled gradient-echo (SPGR) sequence. Three healthy subjects and seven patients with mild OA were examined. Signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), diagnostic confidence in assessing cartilage abnormalities, and image quality were determined. Abnormalities were assessed with the whole organ magnetic resonance imaging score (WORMS). Focal cartilage lesions and bone marrow edema pattern (BMEP) were also quantified. At 7.0 T, SNR was increased (p < 0.05) for all sequences. For the IM-w FSE sequence, limitations with the specific absorption rate (SAR) required modifications of the scan parameters yielding an incomplete coverage of the knee joint, extensive artifacts, and a less effective fat saturation. CNR and image quality were increased (p < 0.05) for SPGR and FIESTA and decreased for IM-w FSE. Diagnostic confidence for cartilage lesions was highest (p < 0.05) for FIESTA at 7.0 T. Evaluation of BMEP was decreased (p < 0.05) at 7.0 T due to limited performance of IM-w FSE. Gradient echo-based pulse sequences like SPGR and FIESTA are well suited for imaging at UHF which may improve early detection of cartilage lesions. However, UHF IM-w FSE sequences are less feasible for clinical use

    Near-infrared (NIR) spectroscopy. A new method for arthroscopic evaluation of low grade degenerated cartilage lesions. Results of a pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Arthroscopy is a highly sensitive method of evaluating high-grade cartilage lesions but the detection of low-grade lesions is often is unreliable. Objective measurements are required. A novel NIRS (near-infrared-spectroscopy) device for detection of low-grade cartilage defects was evaluated in a preliminary clinical study.</p> <p>Methods</p> <p>In 12 patients who had undergone arthroscopy, the cartilage lesions within the medial knee compartment were classified according to the ICRS protocol.</p> <p>With a NIR spectrometer system and an optical probe, similar in design to a hook used for routine arthroscopy, the optical properties of cartilage were measured during arthroscopy.</p> <p>Results</p> <p>The mean ratio of 2 NIR absorption bands of intact cartilage 3.8 (range 2.3 to 8.7).was significantly lower than that of cartilage with grade 1 lesions (12.8, range 4.8 to 19.6) and grade 2 lesions (13.4, range 10.4 to 15.4).</p> <p>No differences were observed between grade 1 and grade 2 lesions.</p> <p>Conclusion</p> <p>NIRS can be used to distinguish between ICRS grade 1 lesions and healthy cartilage during arthroscopic surgeries. The results of this clinical study demonstrate the potential of NIRS to objectify classical arthroscopic grading systems.</p

    Post-traumatic glenohumeral cartilage lesions: a systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Any cartilage damage to the glenohumeral joint should be avoided, as these damages may result in osteoarthritis of the shoulder. To understand the pathomechanism leading to shoulder cartilage damage, we conducted a systematic review on the subject of articular cartilage lesions caused by traumas where non impression fracture of the subchondral bone is present.</p> <p>Methods</p> <p>PubMed (MEDLINE), ScienceDirect (EMBASE, BIOBASE, BIOSIS Previews) and the COCHRANE database of systematic reviews were systematically scanned using a defined search strategy to identify relevant articles in this field of research. First selection was done based on abstracts according to specific criteria, where the methodological quality in selected full text articles was assessed by two reviewers. Agreement between raters was investigated using percentage agreement and Cohen's Kappa statistic. The traumatic events were divided into two categories: 1) acute trauma which refers to any single impact situation which directly damages the articular cartilage, and 2) chronic trauma which means cartilage lesions due to overuse or disuse of the shoulder joint.</p> <p>Results</p> <p>The agreement on data quality between the two reviewers was 93% with a Kappa value of 0.79 indicating an agreement considered to be 'substantial'. It was found that acute trauma on the shoulder causes humeral articular cartilage to disrupt from the underlying bone. The pathomechanism is said to be due to compression or shearing, which can be caused by a sudden subluxation or dislocation. However, such impact lesions are rarely reported. In the case of chronic trauma glenohumeral cartilage degeneration is a result of overuse and is associated to other shoulder joint pathologies. In these latter cases it is the rotator cuff which is injured first. This can result in instability and consequent impingement which may progress to glenohumeral cartilage damage.</p> <p>Conclusion</p> <p>The great majority of glenohumeral cartilage lesions without any bony lesions are the results of overuse. Glenohumeral cartilage lesions with an intact subchondral bone and caused by an acute trauma are either rare or overlooked. And at increased risk for such cartilage lesions are active sportsmen with high shoulder demand or athletes prone to shoulder injury.</p

    Mass-casualty incidents in terror

    No full text

    SINART - Einjahresergebnisse einer neuen Philosophie der retrograden Marknagelung am Femur

    No full text
    • …
    corecore