1,555 research outputs found
Range Queries on Uncertain Data
Given a set of uncertain points on the real line, each represented by
its one-dimensional probability density function, we consider the problem of
building data structures on to answer range queries of the following three
types for any query interval : (1) top- query: find the point in that
lies in with the highest probability, (2) top- query: given any integer
as part of the query, return the points in that lie in
with the highest probabilities, and (3) threshold query: given any threshold
as part of the query, return all points of that lie in with
probabilities at least . We present data structures for these range
queries with linear or nearly linear space and efficient query time.Comment: 26 pages. A preliminary version of this paper appeared in ISAAC 2014.
In this full version, we also present solutions to the most general case of
the problem (i.e., the histogram bounded case), which were left as open
problems in the preliminary versio
Selection from read-only memory with limited workspace
Given an unordered array of elements drawn from a totally ordered set and
an integer in the range from to , in the classic selection problem
the task is to find the -th smallest element in the array. We study the
complexity of this problem in the space-restricted random-access model: The
input array is stored on read-only memory, and the algorithm has access to a
limited amount of workspace. We prove that the linear-time prune-and-search
algorithm---presented in most textbooks on algorithms---can be modified to use
bits instead of words of extra space. Prior to our
work, the best known algorithm by Frederickson could perform the task with
bits of extra space in time. Our result separates
the space-restricted random-access model and the multi-pass streaming model,
since we can surpass the lower bound known for the latter
model. We also generalize our algorithm for the case when the size of the
workspace is bits, where . The running time
of our generalized algorithm is ,
slightly improving over the
bound of Frederickson's algorithm. To obtain the improvements mentioned above,
we developed a new data structure, called the wavelet stack, that we use for
repeated pruning. We expect the wavelet stack to be a useful tool in other
applications as well.Comment: 16 pages, 1 figure, Preliminary version appeared in COCOON-201
Assessing direct contributions of morphological awareness and prosodic sensitivity to children’s word reading and reading comprehension
We examined the independent contributions of prosodic sensitivity and morphological awareness to word reading, text reading accuracy, and reading comprehension. We did so in a longitudinal study of English-speaking children (N = 70). At 5 to 7 years of age, children completed the metalinguistic measures along with control measures of phonological awareness and vocabulary. Children completed the reading measures two years later. Morphological awareness, but not prosodic sensitivity made a significant independent contribution to word reading, text reading accuracy and reading comprehension. The effects of morphological awareness on reading comprehension remained after controls for word reading. These results suggest that morphological awareness needs to be considered seriously in models of reading development and that prosodic sensitivity might have primarily indirect relations to reading outcomes.
Keywords: Morphological Awareness; Prosody; Word Reading; Reading Comprehension
Successful use of axonal transport for drug delivery by synthetic molecular vehicles
We report the use of axonal transport to achieve intraneural drug delivery. We constructed a novel tripartite complex of an axonal transport facilitator conjugated to a linker molecule bearing up to a hundred reversibly attached drug molecules. The complex efficiently enters nerve terminals after intramuscular or intradermal administration and travels within axonal processes to neuron cell bodies. The tripartite agent provided 100-fold amplification of saturable neural uptake events, delivering multiple drug molecules per complex. _In vivo_, analgesic drug delivery to systemic and to non-targeted neural tissues was greatly reduced compared to existing routes of administration, thus exemplifying the possibility of specific nerve root targeting and effectively increasing the potency of the candidate drug gabapentin 300-fold relative to oral administration
Locked and Unlocked Chains of Planar Shapes
We extend linkage unfolding results from the well-studied case of polygonal
linkages to the more general case of linkages of polygons. More precisely, we
consider chains of nonoverlapping rigid planar shapes (Jordan regions) that are
hinged together sequentially at rotatable joints. Our goal is to characterize
the families of planar shapes that admit locked chains, where some
configurations cannot be reached by continuous reconfiguration without
self-intersection, and which families of planar shapes guarantee universal
foldability, where every chain is guaranteed to have a connected configuration
space. Previously, only obtuse triangles were known to admit locked shapes, and
only line segments were known to guarantee universal foldability. We show that
a surprisingly general family of planar shapes, called slender adornments,
guarantees universal foldability: roughly, the distance from each edge along
the path along the boundary of the slender adornment to each hinge should be
monotone. In contrast, we show that isosceles triangles with any desired apex
angle less than 90 degrees admit locked chains, which is precisely the
threshold beyond which the inward-normal property no longer holds.Comment: 23 pages, 25 figures, Latex; full journal version with all proof
details. (Fixed crash-induced bugs in the abstract.
Mode-coupling theory for multiple-time correlation functions of tagged particle densities and dynamical filters designed for glassy systems
The theoretical framework for higher-order correlation functions involving
multiple times and multiple points in a classical, many-body system developed
by Van Zon and Schofield [Phys. Rev. E 65, 011106 (2002)] is extended here to
include tagged particle densities. Such densities have found an intriguing
application as proposed measures of dynamical heterogeneities in structural
glasses. The theoretical formalism is based upon projection operator techniques
which are used to isolate the slow time evolution of dynamical variables by
expanding the slowly-evolving component of arbitrary variables in an infinite
basis composed of the products of slow variables of the system. The resulting
formally exact mode-coupling expressions for multiple-point and multiple-time
correlation functions are made tractable by applying the so-called N-ordering
method. This theory is used to derive for moderate densities the leading mode
coupling expressions for indicators of relaxation type and domain relaxation,
which use dynamical filters that lead to multiple-time correlations of a tagged
particle density. The mode coupling expressions for higher order correlation
functions are also succesfully tested against simulations of a hard sphere
fluid at relatively low density.Comment: 15 pages, 2 figure
Spatial Structure of Stationary Nonequilibrium States in the Thermostatted Periodic Lorentz Gas
We investigate analytically and numerically the spatial structure of the
non-equilibrium stationary states (NESS) of a point particle moving in a two
dimensional periodic Lorentz gas (Sinai Billiard). The particle is subject to a
constant external electric field E as well as a Gaussian thermostat which keeps
the speed |v| constant. We show that despite the singular nature of the SRB
measure its projections on the space coordinates are absolutely continuous. We
further show that these projections satisfy linear response laws for small E.
Some of them are computed numerically. We compare these results with those
obtained from simple models in which the collisions with the obstacles are
replaced by random collisions.Similarities and differences are noted.Comment: 24 pages with 9 figure
Lifetest of the High Output Maximum Efficiency Resonator (HOMER) Laser for the SAFFIRE Instrument on NASA's DESDynI Project
We update the status of a diode-pumped, Nd:YAG oscillator that is the prototype laser for NASA's DESDynI mission. After completing TRL-6 testing, this laser has fired over 5.5 billion shots in lifetesting
Screening of Hydrodynamic Interactions in Semidilute Polymer Solutions: A Computer Simulation Study
We study single-chain motion in semidilute solutions of polymers of length N
= 1000 with excluded-volume and hydrodynamic interactions by a novel algorithm.
The crossover length of the transition from Zimm (short lengths and times) to
Rouse dynamics (larger scales) is proportional to the static screening length.
The crossover time is the corresponding Zimm time. Our data indicate Zimm
behavior at large lengths but short times. There is no hydrodynamic screening
until the chains feel constraints, after which they resist the flow:
"Incomplete screening" occurs in the time domain.Comment: 3 figure
Tri-partite complex for axonal transport drug delivery achieves pharmacological effect.
BACKGROUND: Targeted delivery of pharmaceutical agents into selected populations of CNS (Central Nervous System) neurons is an extremely compelling goal. Currently, systemic methods are generally used for delivery of pain medications, anti-virals for treatment of dermatomal infections, anti-spasmodics, and neuroprotectants. Systemic side effects or undesirable effects on parts of the CNS that are not involved in the pathology limit efficacy and limit clinical utility for many classes of pharmaceuticals. Axonal transport from the periphery offers a possible selective route, but there has been little progress towards design of agents that can accomplish targeted delivery via this intraneural route. To achieve this goal, we developed a tripartite molecular construction concept involving an axonal transport facilitator molecule, a polymer linker, and a large number of drug molecules conjugated to the linker, then sought to evaluate its neurobiology and pharmacological behavior. RESULTS: We developed chemical synthesis methodologies for assembling these tripartite complexes using a variety of axonal transport facilitators including nerve growth factor, wheat germ agglutinin, and synthetic facilitators derived from phage display work. Loading of up to 100 drug molecules per complex was achieved. Conjugation methods were used that allowed the drugs to be released in active form inside the cell body after transport. Intramuscular and intradermal injection proved effective for introducing pharmacologically effective doses into selected populations of CNS neurons. Pharmacological efficacy with gabapentin in a paw withdrawal latency model revealed a ten fold increase in half life and a 300 fold decrease in necessary dose relative to systemic administration for gabapentin when the drug was delivered by axonal transport using the tripartite vehicle. CONCLUSION: Specific targeting of selected subpopulations of CNS neurons for drug delivery by axonal transport holds great promise. The data shown here provide a basic framework for the intraneural pharmacology of this tripartite complex. The pharmacologically efficacious drug delivery demonstrated here verify the fundamental feasibility of using axonal transport for targeted drug delivery.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
- …
