
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 24, 197-208 (1982)

The Complexity of Selection and Ranking in
X + Y and Matrices with Sorted Columns

GREG N. FREDERICKSON*

AND

DONALD B. JOHNSON+

Computer Science Department, The Pennsylvania State University,
University Park, Pennsylvania 16802

Received September 12, 1980; revised December 4, 1981

The complexity of selection is analyzed for two sets, X+ Y and matrices with sorted
columns. Algorithms are presented that run in time which depends nontrivially on the rank k
of the element to be selected and which is sublinear with respect to set cardinality. Identical
bounds are also shown for the problem of ranking elements in these sets, and all bounds are
shown to be optimal to within a constant multiplicative factor.

INTRODUCTION

We consider the problem of selecting the kth largest element (and the related
problem of ranking a value) in sets constrained to possess certain structures. The
structures we consider are simple, mathematically interesting, and arise in practical
applications. An example is a set that is generated as the Cartesian sum X + Y, where
X and Y are real vectors. An application in which this set arises is the computation of
the Hodges-Lehmann estimator in statistics, for which the median of X- Y must be
found. A second example is ,a set that is presented as a real matrix with sorted
columns. An application from operations research in which this set arises is the
computation of the optimum distribution of effort for concave functions. Consider m
activities with cumulative value functions&.), and n units of effort to be distributed
among the activities in integral amounts. If the functions are concave, then the
marginal return &(i + 1) --J(i) f or any activity is nonincreasing. Thus the marginal
returns for all activities may be presented in an n X m matrix with sorted columns,
and the problem may be solved by selecting the nth largest value.

* Work of this author was partially supported by the National Science Foundation under Grant
MCS-7909259.

+ Work of this author was partially supported by the National Science Foundation under Grants
MCS-7721092 and MCS-8002684.

197
0022~0000/82/020 197- 12502.00/O

Copyright 0 1982 by Academic Press, Inc.
All rights of reproduction in any form reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82501555?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

198 FREDERICKSON ANDJOHNSON

Selection in the sets mentioned is interesting for several reasons. Due to the
constraints placed on the sets, selection may be performed in time sublinear in the
cardinality of the set. Hence the linear-time selection algorithm of [2] is non-optimal
in such circumstances. To support sublinearity of the problems, we make the
following observations about inputting the set. For selection in X + Y, where we
assume without loss of generality that 1X(= n < 1 Y(= m, we make use of the fact
that the set may be represented with n + m elements, while the cardinality is nm. For
selection in matrices with sorted columns, we assume that either the matrix is already
resident in memory, or each value may be computed as needed in constant time (as is
the case, for instance, with the problem of optimum distribution of effort).

Unlike selection in unconstrained sets, the complexity of selection in constrained
sets is dependent asymptotically on the rank k of the element being selected. (We
assume k < [nm/21, with k > [nm/21 being handled symmetrically.) The complexity
for both of our problems is 0(m fp log(k/p)), with p = min{k, m). For example, the
complexity is e(m) for k = O(m) and B(m log n) for k = 0(mn). For selection in
X + Y, previous work has concentrated on finding the median and has thus not iden-
tified this fact. For selection in matrices with sorted columns, previous work has
focused on the case k = n, for which non-optimal algorithms were presented.

Selection is one of the three quantile operations (the other two are ranking and
verification) that demonstrate asymptotically identical complexity for the sets
considered here. The lower bounds we present for selection and ranking are based on
verification: Given a set, a rank k, and a value u, determine whether 2: can have rank
k in the set.

The bounds that we obtain improve substantially on previous results, and
furthermore are optimal to within a constant factor for all values of the three
parameters k, m, and n. Johnson and Mizoguchi [6] present an O(m log m) algorithm
for selecting the kth largest element in X + Y, and Johnson and Kashdan [5] give a
lower bound of i2(m + @log k). These results are optimal only for the limited case
where n = e(m) and k = 8(mn). Bounds of 0(m log m) for the same limited case
appear in Shamos [8]. Our bound of e(m +p log(k/p)) is better than the above
bounds whenever n = o(m) or k = o(mn). For the problem of optimum distribution of
effort, previous upper bounds are O(m(log n)‘) in [4] and O(m + n log m) (suggested
by the result in 131). Our bounds of 8(m +p log(k/p)) for selection in matrices with
sorted columns yield B(max{m, m log(n/m)]) for this problem, where k = n. The
O(m + n log m) bound can match our bound only when n is O(m/log m).

SELECTION w MATRICES WITH SORTED COLUMNS

In this section, we present an algorithm for finding a kth smallest element in a
given n x m matrix X with columns sorted in nondecreasing order. Our algorithm
SELECT (Fig. 1) consists of three phases. In the first phase, the number of elements
is reduced to O(k) by a procedure CUT. In the case in which k is o(mn), this
procedure is able to rule out a large number of elements in a small amount, O(m), of

SELECTION AND RANKING 199

proc SELECT (X, k)

(I) It is given that k < [mn/2]. Apply CUT to X, after which the additional
conditions N < 9k/2 and m < k hold.

(2) While N > m + I/a* apply REDUCE to (X, k) yielding a new problem (X, k).

(3) Find a kth element in X using linear time selection.

FIG 1. Algorithm to select a kth element in matrix X with m sorted columns of length n. N is the
number of elements that remain.

time. In the second phase, the number of elements is reduced to O(m) by a procedure
REDUCE, This procedure is able to rule out a constant percentage of remaining
elements on each of O(log(k/m)) iterations, each costing O(m) time. In the third
phase, the appropriate element is selected from the remaining O(m) elements, using a
linear-time selection algorithm.

The major result of this section concerns the rapid elimination of all but O(k)
elements, as performed by procedure CUT. As a result of this step we can derive an
upper bound that exhibits nontrivial dependence of the running time on k. The
remaining phases of our algorithm are a careful development of the ideas of Jefferson,
Shamos and Tarjan in Shamos [8].

We assume k is no larger than /nm/2]. Problems with larger k can be solved by
selecting the (nm - k + 1)th element in -X (indexed so columns are nondecreasing).
We further assume that m > 2 (otherwise, the solution is trivial) and that matrix X is
supplemented with two m-vectors,first and lust. Initially,Jirst(j) = 1 and lust(j) = n
for each column j. The number of column elements nj may be computed as lust(j) -

first(j) + 1. During the execution of the algorithm,first and lust values are adjusted
when elements are discarded. At any point, the number of elements that remain is
N=Cjnj.

Our algorithm uses two subroutines that are based on selection algorithms. By a
partition (I,, i*, I,) about an mth element in Y with index set 1, we mean the
following: Select an mth element yi*, using a linear-time selection algorithm. Then
partition the index set I into I,, {i*}, and I,, so that]I, 1 = m - 1, j E I, implies
yj ,< yi*, and j C I, implies uj > yi*.

We use linear-time weighted selection [6] similarly. By a partition (Q,, i*, Q,) of
index set Q consistent with the weighted selection of an Mth weighted element in Y,
with element yj having weight wj, we mean: Partition Q into Qi, {i*}, and Q1 so that
LQI Wj < M < wi* + CjQ, Wj, j E Q, implies Yj < yi*, and j E Q2 implies yj > yi*.

The first step of SELECT is to apply the procedure CUT (Fig. 2) to the given
problem. There are three steps. First, the case in which k < m is handled by ruling
out all but k columns. Second, the number of elements is reduced to O(k log k) by a
sequence of selections that allow portions of columns to be discarded in groups.
Third, the number of elements is reduced to O(k) by a weighted selection on represen-
tatives from segments of the remaining columns.

A further discussion of step (1) of CUT is unnecessary. Step (2) of CUT
transforms X by operating on the vectors first and lust so that N, the number of

200 FREDERICKSON AND JOHNSON

proc CUT (X. k)

(1) If k < WZ, select a kth smallest element xlj. in the first row of X. Find a partition
(I,, j*, I,) of column indices consistent with this selection, and reindex the
columns so that I, maps to {k + I,..., m). Set m to k.

(2) If mn > 9k/2:
(2.1) Compute (i,,j,), where

j,=[m/2’]+lforI=O ,..., q+l,
i, = [(k + 1)/j,] for I= l,..., q,
i,= I, i,+,=nt 1,
where q=max(lIj,<j,~,andi,<nt.

(2.2) For I = l,..., q,
Select a j,th element u, from the lirstj,_, - 1 elements of row i,. Reindex
columns 1 through j,_, - 1 corresponding to a partition consistent with
this selection. Set last(j) = i, - 1 for j = j ,,..., j,_ , - 1.

(3) If N > 9k/2:
(3.1) Let Q= {(i,j)li=i, andj= l,..., j, for I=0 ,..., qt.

Let (i,,j) E Q have weight i,, , - i,.
(3.2) Find a partition (Q,, (i*, j*), Q,) of Q consistent with a weighted

selection of a 4kth element of (x, 1 (i, j) E Qt.
(3.3) For all j, reset last(j) to max{ (0) U (i,, , - 1 ((i,, j) E Q - Q2)).

FIG. 2. CUT removes elements quickly from any problem where k is far from the median.

elements that remain, is O(k log k). To do this, indices (i,,j,) are identified for which
j, is approximately m/2’ and i,j, > k. Then, in order of increasing 1, columns are rein-
dexed so that the first j, elements of row i, are no greater that any of the next j,
elements in row i,. Then, as allowed by Lemma 1, all elements xi,i with i > i, and
j >j,, for every 1= 0 ,..., q, are discarded.

LEMMA 1. At least k elements remain in Xfollowing step (2) in CUT, and any
kth element among these solves the original problem.

Proof. It may be verified by induction that the condition imposed by step (2.2)
on the order of the lirst j,- , - 1 elements in row i, is preserved under rearrangements
made when 1 takes on larger values. Thus, on completion of step (2.2), the stated
conditions hold simultaneously for all 1= l,..., q. Each discarding step retains at least
k elements. Therefore, N > k when step (2.2) is finished. To complete the proof it will
suffice to show that every discarded element xij is no smaller than the kth value in X
after step (2.2). But this follows immediately from the fact that there exists an 1,
l<l<q, for which i,<i and j,<j<j ,-,. Thus, xij is no smaller than i, j, - 1 > k
elements retained. 1

Step (3) of CUT reduces the number of elements to no more than 9k/2. It selects a
4kth weighted element in the set of all elements on which rearrangements were
performed in step (2). These elements are taken to represent the column segments
running from i, to il+ , - 1 in each column j in which xirj is retained, and their weights
in the weighted selection are, therefore, i,, , - i,. Column segments with indices (i,j),

SELECTION AND RANKING 201

i > i,, are discarded whenever the weighted selection discards an element with index
(i,,j) because the weight of 4k has been exceeded. It is necessary to break ties so as
to retain values with smallest i indices for a givenj.

LEMMA 2. Let the columns be rearranged and their lengths be nj as computed in
CUT. No more than 9k/2 elements remain, and any kth element among these is a
solution to the original problem.

Proof If step (3) is not performed, Lemma 1 gives the result. Otherwise, let x* =
Xi*j*, the last weighted element retained in step (3.2), and call any element Xij large if
xii > x*. We proceed to show that no element less than xx is discarded and fewer
than (,&/2 + 1)k large elements are retained, where pk is the actual weight retained in
step (3.2).

A column retaining a large element with row index i < i, retains at most a total of
(il - i, - 1) < ([(k + l)/([m/2] + l)] - 2) < 2k/ m elements. With m columns there
are at most z < 2k large elements retained in this way. A column retaining a large
element with row index i > i,, for I> 0, will have il+ i - 1 elements of which at least
i, will not be large. Hence, fewer than half of the elements in such a column will be
large. Thus, an upper bound on the total number of large elements retained will be
z t @k - z)/2 < (42 t 1) k. Step (3.2) requires /?k > 4k. Thus ,8k - (/?/2 t 1) k > k
elements no larger than x* remain including all given elements less than x*. The fact
that no nj exceeds k means the weight of x* is less than k/2 and, therefore,
bk< 9k/2. I

This completes the discussion of CUT.
Step (2) of SELECT employs a procedure REDUCE, shown in Fig. 3. On each

iteration, REDUCE returns a problem in which a constant fraction of the current

proc REDUCE (X, k)

(1) If k>N/2:

(1.1) For each column j, find i, =jkt(j) + [anj].
Let element xii/ have weight nj.

(1.2) Find a partition (Q, ,j*, QJ of Q = { l,..., m) consistent with a weighted
selection of the (aN)th element of (xijj Ij E Q}.

(1.3) For each j in Q,U{j*} setfirst(j)=ij+ 1. Reset nj, k, and N, accor-
dingly.

(2) Otherwise:
(2.1) For each column j, find i i = last(j) - [anjJ.

Let element xljj have weight nj.
(2.2) Find a partition (Q,, j*, Q,) of Q = (I,..., m) consistent with a weighted

selection of the (1 - a)Nth element of {xijj 1 j E Q}.
(2.3) For each j in Q, U (j*}, set lusl(j) = ij - 1.

Reset nj and N accordingly.

FIG. 3. REDUCE discards a constant fraction of elements in time proportional to m.

202 FREDERICKSON AND JOHNSON

number of elements, N = C nj, has been removed either from the beginning or the
end of selected columns. The removal of elements is done in such a way as to
preserve the remaining problem as a selection problem, a solution to which solves the
given problem. When k selects an element no smaller than the median of the current
problem, elements are discarded from the beginning of certain current columns, and k
is adjusted accordingly. First, the portion of each column j between Jrst(j) and
last(j) is partitioned at an element, roughly a of the way down, where a may be
chosen as less than or equal to 1 - dm. Then, using linear-time weighted
selection, a partition of these column representatives is found consistent with a
weighted selection of an (aN)th representative. The beginning segments in each of the
columns in the first block of the partition induced by the weighted selection are
discarded by adjusting appropriate values in the vector first.

LEMMA 3. Let N = C nj and a = 1 - dm. REDUCE discards at least a2N
elements, yielding a problem (X, k), the solution of which is a solution to the original
problem.

ProojI We consider the case for which k > N/2. The number of elements rejected
is

[anj*] + 1 + 5 ([anjj + 1) > anj* + a y anj 2 a*N.
jeQ1 .ieQ

All elements discarded are no larger than u* = xijmj*. The number of elements
retained that are known to be no smaller than a* is at least

[(l-a)nj-l--l+ x [(l-a)njl
jeQ2

>(l-Ct)fIj+-l+ 1 (l-a)n,i
jsQ2

>(l-a)*N-l=(i+l/N)N-l=N/2.

Hence any kth element in the elements retained (where k is adjusted to take into
account the number of small elements discarded over all previous iterations) is a
solution to the original problem.

When k < N/2, similar arguments yield the result. m

We may now state the main result.

THEOREM 1. Let p = min{k, m). Algorithm SELECT finds a kth smallest
element in an n x m matrix with sorted columns in O(m + p log(k/p)) time.

Proof. Lemmas 1-3, together with the evident correctness of step (3) of SELECT
give the correctness argument. In CUT, step (1) clearly requires at most O(m) time.
Step (2) requires O(p +p/2 + . a.) which is O(p) time, as does step (3), using a
weighted selection on a subset of the union of the sets involved in step (2). REDUCE

SELECTION AND RANKING 203

also runs in O(p) time, since it involves one weighted selection on p elements. Since
N > l/a2 at every iteration, we may conclude from Lemma 3 that (Y satisfies

l-&-z7<cr<l-&

from which it may be determined that

a<cY<l-@/2.

Thus, REDUCE will be called in O(log k/p) iterations of step (2) of SELECT. Step
(3) of SELECT runs in O(p) time. The claimed result follows. 1

SELECTION IN X+ Y

Previous solutions to selection in X + Y [6, 81 have required that at least X be
sorted, which yields a problem with sorted columns to which SELECT can be
applied. While sorting X does not increase the asymptotic complexity when selecting
for the median, it is too time-consuming when k is small. We thus resort to only
“semi-sorting” X to an extent allowed by the value of k. We then apply essentially the
same algorithm as in the preceding section. Our analysis will be of interest, however,
since we must show that our semi-sorting is sufficiently line to give well-positioned
representatives of columns in the REDUCE phase.

Our semi-sort of X is generated in two steps. When k < n, we assume that only the
k smallest elements in X are retained. In the first step, an ordering is imposed on X so
that i’ < i, < i” implies xi, < xi, < xi,,, for I = O,..., q with i, as defined in procedure
CUT. Since CUT uses only the i, rows, this ordering is sufficient to preserve the
correctness of the procedure. This ordering can be performed in O(min{k, n)) time, if
the partitioning proceeds from I = q to I = 1.

In the second step, the ordering is refined so that REDUCE may use it essentially
as though X is totally sorted. For REDUCE to operate exactly as before, it would be
necessary that the element at position i =first(j) + LonjJ in X be the same value that
would be at this position if X were sorted, and that X be partitioned on this value so
that i’ < i and i” > i implies xi, <xi,,. We do not achieve this result, in general,
precisely at position i, but at a position preceding i but close enough so that the
algorithm behaves as if CT > d in all cases. The symmetric result is also obtained
where REDUCE finds index i = last(j) = [anj].

Our method is to repeatedly subdivide the intervals in X between indices i, and
’ Z1+1 - 1, at each subdivision placing a new correctly positioned partition element in
the middle of the previously unordered elements of each subinterval. For each pass
over X, the potential distance from any index i chosen in REDUCE to the nearest
subdivision point, or useful index, is cut in half. The number of passes over X is
t/2 + 6, where t is the number of iterations of REDUCE that are required. After the
passes over X are completed, we record the mapping from each i = l,..., min{k, n} to

204 FREDERICKSON ANDJOHNSON

the nearest useful indices above and below the given i. Accessing a useful index, given
i =first(j) + [anjJ or i = lust(j) - 1an.J will then take constant time.

As before we choose a = 1 - v’* 1 N. However, the effect of X being not wholly
sorted will be to discard a number of elements from, say, column j which is equal to
\a’tziJ + 1 for some a’ <a. In the proof of Theorem 1 we showed that a > { during
the entire execution of SELECT. We now show that the analogous result a’ > d holds
for a sufficiently fine subdivision of X.

LEMMA 4. Let t iterations of REDUCE su@?ce to complete the execution of
SELECT for a’ = $. Then t/2 + 6 passes over X will subdivide X sufficiently to
realize a’ > f over the entire execution of SELECT.

Proof. Let nj elements remain in column j after t iterations. The initial number of
elements n; in columnj, therefore, satisfies n; <f ‘(n,), where f (n) = fin + fi.

This gives

ng < nj2’12 + + 2’12 (2’12(nj + 2 + \/z).
iY1

If nj < 61, then

t/2 + 6 > log(64nj’/(nj + 2 + fi)) > log nj”

which is a sufficient number of passes for column j to have been sorted. If nl > 6 1,
then N > 61 > 1024/17. Let 6 be the maximum distance between useful elements in a
subdivision. A sufficient condition for a’ >, a is [anjj - [nj/4] >, 6 - 1, which we
show:

6 < [nj”/2 t12t6] < [2”*(nj + 2 + fi)/2’12t6] < [nj/321

= [nj(t - &F$ii@jl < [nj(t - d-)1

= [nj(a - a)] < [anjJ - [nj/4J + 1. I

THEOREM 2. Selection in X + Y can be performed in O(m +p log(k/p)) time,
where 1X(= n < m = / YI and p = min{k, m).

Proof. We use the modified algorithm SELECT as just described. Correctness
follows from this discussion and Theorem 1. By Lemma 4, the passes to semi-sort X
cost time proportional to (t/2 + 6) min{k, n} which is O(m +p log(k/p)) since n < m.
Lemma 4 ensures that the complexity arguments of Theorem 1 apply here also. m

SELECTION AND RANKING 205

RANKING

In this section we present algorithms for finding the rank k of a given value u in
both of the structures previously considered. While our result for ranking in X + Y is
more interesting, for purposes of exposition we first consider ranking in a matrix with
sorted columns.

In the problem of ranking a value u in a matrix with sorted columns, we perform a
one-sided binary search [l] on each column to find the insertion position kj in each
column. For v > x,~, the first stage of the one-sided binary search identifies an
interval xii < u < xzij, where i is a power of 2. The second stage, then, uses ordinary
binary search to locate the position of u in this interval. Assume RANK to be the
above procedure.

THEOREM 3. Algorithm RANK solves a ranking problem on an n x m matrix
with sorted columns in O(m +p log(k/p)) time, where p = mm{ k, m }.

ProojI No more than O(m) time is required to examine every element in the tirst
row. Let Xkjj < V < Xkj+ ,,j. Then, O(log kj) time is sufficient to find kj in column j,
where kj > 0. For such columns, we have

5 log kj = log 2 kj < log(k/p)p =p log(k/p).
j=l j=l

Correctness is immediate. 1

One way to rank in X + Y is to sort X and use the algorithm RANK. When the
rank k turns out to be sufficiently small, however, this method is not optimal. Hence,
we employ an approach that relies on a semi-sorting of X similar to that used in
selection in X + Y. As in the ranking algorithm for a matrix with sorted columns, we
use the one-sided binary search on each column. However, to efficiently produce a
semi-sorting on X, we need a good estimate k’ of k, and to efficiently generate a good
estimate k’ we need some ordering on X. Hence, we interleave the task of producing a
semi-sorting with the task of determining k.

Our ranking algorithm for X + Y shown in Fig. 4, consists of four steps. The initial
part of the semi-sorting of X is done in step (1). First, the 2 ‘logn ‘th element is selected
and X is reordered around this element. Then the first interval in X is repeatedly
partitioned around its median in order to guarantee that xj < x, < xh whenever
j < 1 < h and 1= 2’, for i = I,..., /log nJ.

Step (2) generates an estimate k’ of k as follows: In each column, if x, + yj > U,
the first part of a one-sided binary search for value v - yj is performed, using the
subdivision elements x,, where I = 2’ for integers i. The resulting insertion position kj
approximates the actual position kj by kj < k,! Q 2kj when kj > 0 and by k; = 1 when
kj = 0. The sum k’ = xi”= 1 kj has the property that k < k’ < 2k + m.

Step (3) completes the task of producing a semi-sorting on X, proceeding as in the
algorithm for selection in X + Y and using the estimated rank k’. The intervals found

206 FREDERICKSON AND JOHNSON

proc RANKXY (X, Y, c)

(1)

(2)

(3)

(4)

For i = llog n],..., 1, partition and reorder (x, 1 j = l,..., min(2’ ’ ‘, n} 1 consistent
with the selection of a 2’th element.
For each column j of X + Y, set k,! = 1. While k,! < n and x~; +yi Q t’, reset
kj = 2k;.
Set the estimate k’ = C;“_, k\.

Let {(O, l), (1,2), (2,4) ,..., (2i’°Knl, n)) be the set L of intervals. For each of
[log(k’/m)j passes, for each interval (a, b) in L with b > a + I, reorder {x, 1 i =
a,..., bt consistent with the selection of a median, and replace (a, b) in L with
the two new intervals.
For each column j, binary search interval (jkj/2j, k;) using the endpoints of
intervals in L, and then exhaustively search the remaining interval to find k,.
Set k=Cr>‘,, k,.

FIG. 4. RANKXY ranks a value u in X + Y.

in step (1) are repeatedly subdivided around the medians in log(k’/m) separate
passes.

Step (4) completes the search for u in each column. It first performs a binary
search over rows [kj/2J through kj’, .using the subdivision points computed in step
(3). The search in the column is completed by partitioning the final unordered
interval on v.

THEOREM 4. Algorithm RANKXY finds the rank in X + Y of a given value v in
O(m +p log(k/p)) time, where /X(= n <m = (Yl and p = min(k, m}.

Proof. Correctness follows from the above discussion and previous results. We
analyze running time as follows: Step (1) uses O(n) (and therefore O(m)) time to
partition X. Step (2) requires 0(1 t log kj) time for each column j, which by the
proof of Theorem 3 can be seen to be O(m tp log(k/p)) overall. Step (3) may be
seen to cost O(n log(k/p)). The binary search of step (4) can be seen to be O(m t
p log(k/p)) by an argument similar to that in the proof of Theorem 3. For each
column, the final partitioning can examine at most kj/(k’/m) elements. Summing over
allj yields O(m) work. 1

OPTIMALITY

The algorithms we have presented for selection and ranking in X t Y and in
matrices with sorted columns, as well as the other algorithms cited [3, 4, 6, 81,
belong to the class of algorithms in which the comparisons performed are always
between linear combinations of the inputs. In this section we establish a single lower
bound on the number of comparisons needed for each of these problems. Our
approach will be to show a lower bound for the related verification problem in which
an n X m problem matrix with sorted columns, a rank k, and a trial value t are tested

SELECTION AND RANKING 201

to determine if t is a kth element in the given matrix. If verification on an array with
sorted columns requires T(n, m, k) comparisons in the worst case, then any algorithm
which produces either k or t from an n x m matrix (with or without sorted columns)
and the value t or k, respectively, will expend at least T(n, m, k) - 1 comparisons in
the worst case.

THEOREM 5. Any algorithm which makes comparisons only between linear
combinations of its inputs will require at least max{ m - 1, 1 (m - 2)/2 J
log(fW - l)/ml - 111 comparisons in the worst case to verifv that a number t is the
kth smallest in an n x m rational matrix with m sorted columns, whenever 1 < k <
b/2 1.

ProoJ Let the given problem matrix be represented by a vector x = (xi, ,..., x,, ,
Xl, ,..‘, x,2 ,***, Xlrn ,*-*, x,,) in Euclidean nm space. We will prove the theorem subject
to the following restrictions: all elements of x are distinct, and the trial value t is
given as an element xiei, of x restricted to satisfy i* < n, = /(2k - 1)/m]. Any input
vector with distinct elements will be called valid. Since the theorem requires that
n > n, it is clear that i* may range up to n,. Any lower bound obtained under these
restrictions will also be a lower bound for the more general verification problem of
the theorem.

The proof is in two parts. First we show that all possible inputs can be partitioned
into at least (n, - l)‘cm-2”21 equivalence classes. Then we show that there is at least
one leaf for each equivalence class in any decision tree which solves the verification
problem.

Consider column j of the given input. If j fj *, then there is an index ii, 0 < ij < n,
which defines the point after which t = xisj* can be inserted in sorted column j.
Otherwise, let ijS = i*. Call the vector i = (i,,..., i,) so induced by an input, the
configuration of the input.

Any vector i which satisfies Cij,i ij = k corresponds to some possible input. If we
assume without loss of generality that j* > [(m - 2)/2J, then it is clear that the set of
all configurations contains the set { (il ,..., i,) IO < ij < n, - 1 for 1 <j < [(m - 2)/2 J,
,I$!, ij= k} h’ h w IC is of cardinality at least (n, - l)‘cm-2)‘2’. Therefore, there are at
least this many configurations.

Let g(n, m, k, i*, j*) be an optimal decision tree which decides if xihj* is kth
smallest in an n X m matrix with sorted columns, Furthermore, let &7’ make
comparisons between linear combinations of the inputs and let the outcomes of these
comparisons select one of three subtrees depending on whether the outcome is (, =,
or >. Let any leaf reached over strict outcomes (i.e., = does not hold) be called strict.
By the density of the rational numbers and the finiteness of the tree, for each
configuration there exists at least one strict leaf which is chosen by some input with
that configuration. Assume that two inputs x’ and x” have distinct configurations but
choose the same strict leaf. Any convex combination of x’ and x” also chooses the
same leaf since any strict leaf defines a convex and open subset of R”‘“. Not all of
these convex combinations are valid inputs, of course, but because x’ and x’* have

208 PREDERICKSON AND JOHNSON

distinct configurations there is an index pair (i,j) with the properties x:j < x;*,~* and
x;j > x,!Lj*. Therefore, there exists a vector y, a convex combination of x’ and x”, for
which y, = yiej,. Since y selects the same leaf as x’ and x”, for a sufficiently small
F > 0 every vector in an c-neighborhood of y selects the same leaf as well. Among
these, let y’ and y” be valid inputs that are equal except for y; > y,L,.* =y;!,. > J+ If
by the correctness of K(n, m, k, i*,j*) the configuration of y’ sums to k, then the
configuration of y” sums to k + 1. The contradiction thus induced establishes that
any correct, finite, ternary, linear decision tree must have at least one strict leaf for
each configuration, and, therefore, must perform at least log((n, - l)“m~z~‘z ‘) =
[(m - 2)/2J log([(2k - 1)/m] - 1) comparisons on some input.

Since no information is given relating one column to another, it follows from the
results of Rabin [7] that m - 1 comparisons are required in any case. a

When k > m the bound in Theorem 5 is LI(m +p log(k/p)), as it is when k < m,
since p log(k/p) = 0 in this case. Thus Theorem 5 establishes that our algorithms for
selection and ranking in matrices with sorted columns are optimal to within a
constant factor. In the case of X + Y, a simple construction can provide a valid input
with X in sorted order for any configuration. A refinement of such a construction
supports the existence of y’ and y” in the proof of Theorem 5. Thus, Theorem 5 also
establishes optimality of our algorithms for X + Y.

REFERENCES

1. J. L. BENTLEY AND A. C. YAO, An almost optimal algorithm for unbounded searching, Inform.
Process. Lett. 5 (1976), 82-87.

2. M. BLUM, R. W. FLOYD, V. R. PRAY, R. L. RIVEST, AND R. E. TARIAN, Time bounds for selection,
J. Comput. System. Sci. 1 (1972), 448-461.

3. B. L. Fox, Discrete optimization via marginal analysis, Management Sci. 13 (1966), 210-216.
4. Z. GALIL AND N. MEGIDDO, A fast selection algorithm and the problem of optimum distribution of

effort, J. Assoc. Comput. Mach. 26 (1979), 58-64.
5. D. B. JOHNSON AND S. D. KASHDAN, Lower bounds for selection in X + Y and other multisets, J.

Assoc. Comput. Mach. 25 (1978), 556-570.
6. D. B. JOHNSON AND T. MIZOGUCHI, Selecting the Kth element in X + Y and X, + X, + .. + X,,

SIAM J. Comput. 7 (1978), 147-153.
7. M. 0. RABIN, Proving simultaneous positivity of linear forms, J. Comput. System. Sci. 6 (1972),

639-650.
8. M. I. Shamos, Geometry and statistics: Problems at the interface, in “Algorithms and Complexity:

New Directions and Recent Results” (J. F. Traub, Ed.), pp. 251-280, Academic Press, New York,
1976.

