4,351 research outputs found

    Continuum and Symmetry-Conserving Effects in Drip-line Nuclei Using Finite-range Forces

    Full text link
    We report the first calculations of nuclear properties near the drip-lines using the spherical Hartree-Fock-Bogoliubov mean-field theory with a finite-range force supplemented by continuum and particle number projection effects. Calculations were carried out in a basis made of the eigenstates of a Woods-Saxon potential computed in a box, thereby garanteeing that continuum effects were properly taken into account. Projection of the self-consistent solutions on good particle number was carried out after variation, and an approximation of the variation after projection result was used. We give the position of the drip-lines and examine neutron densities in neutron-rich nuclei. We discuss the sensitivity of nuclear observables upon continuum and particle-number restoration effects.Comment: 5 pages, 3 figures, Phys. Rev. C77, 011301(R) (2008

    Scattering states of a particle, with position-dependent mass, in a double heterojunction

    Full text link
    In this work we obtain the exact analytical scattering solutions of a particle (electron or hole) in a semiconductor double heterojunction - potential well / barrier - where the effective mass of the particle varies with position inside the heterojunctions. It is observed that the spatial dependence of mass within the well / barrier introduces a nonlinear component in the plane wave solutions of the continuum states. Additionally, the transmission coefficient is found to increase with increasing energy, finally approaching unity, whereas the reflection coefficient follows the reverse trend and goes to zero.Comment: 7 pages, 6 figure

    Extensions of the auxiliary field method to solve Schr\"{o}dinger equations

    Full text link
    It has recently been shown that the auxiliary field method is an interesting tool to compute approximate analytical solutions of the Schr\"{o}dinger equation. This technique can generate the spectrum associated with an arbitrary potential V(r)V(r) starting from the analytically known spectrum of a particular potential P(r)P(r). In the present work, general important properties of the auxiliary field method are proved, such as scaling laws and independence of the results on the choice of P(r)P(r). The method is extended in order to find accurate analytical energy formulae for radial potentials of the form aP(r)+V(r)a P(r)+V(r), and several explicit examples are studied. Connections existing between the perturbation theory and the auxiliary field method are also discussed

    Fringe spacing and phase of interfering matter waves

    Get PDF
    We experimentally investigate the outcoupling of atoms from Bose-Einstein condensates using two radio-frequency (rf) fields in the presence of gravity. We show that the fringe separation in the resulting interference pattern derives entirely from the energy difference between the two rf fields and not the gravitational potential difference. We subsequently demonstrate how the phase and polarisation of the rf radiation directly control the phase of the matter wave interference and provide a semi-classical interpretation of the results.Comment: 4 pages, 3 figure

    Anomaly Cancellation in 2+1 dimensions in the presence of a domainwall mass

    Full text link
    A Fermion in 2+1 dimensions, with a mass function which depends on one spatial coordinate and passes through a zero ( a domain wall mass), is considered. In this model, originally proposed by Callan and Harvey, the gauge variation of the effective gauge action mainly consists of two terms. One comes from the induced Chern-Simons term and the other from the chiral fermions, bound to the 1+1 dimensional wall, and they are expected to cancel each other. Though there exist arguments in favour of this, based on the possible forms of the effective action valid far from the wall and some facts about theories of chiral fermions in 1+1 dimensions, a complete calculation is lacking. In this paper we present an explicit calculation of this cancellation at one loop valid even close to the wall. We show that, integrating out the ``massive'' modes of the theory does produce the Chern-Simons term, as appreciated previously. In addition we show that it generates a term that softens the high energy behaviour of the 1+1 dimensional effective chiral theory thereby resolving an ambiguity present in a general 1+1 dimensional theory.Comment: 17 pages, LaTex file, CU-TP-61

    Bound states of bosons and fermions in a mixed vector-scalar coupling with unequal shapes for the potentials

    Full text link
    The Klein-Gordon and the Dirac equations with vector and scalar potentials are investigated under a more general condition, Vv+Vs=constantV_{v}+V_{s}= \mathrm{constant}. These intrinsically relativistic and isospectral problems are solved in a case of squared hyperbolic potential functions and bound states for either particles or antiparticles are found. The eigenvalues and eigenfuntions are discussed in some detail and the effective Compton wavelength is revealed to be an important physical quantity. It is revealed that a boson is better localized than a fermion when they have the same mass and are subjected to the same potentials.Comment: 3 figure

    Scattering states of a particle, with position-dependent mass, in a PT{\cal{PT}} symmetric heterojunction

    Full text link
    The study of a particle with position-dependent effective mass (pdem), within a double heterojunction is extended into the complex domain --- when the region within the heterojunctions is described by a non Hermitian PT{\cal{PT}} symmetric potential. After obtaining the exact analytical solutions, the reflection and transmission coefficients are calculated, and plotted as a function of the energy. It is observed that at least two of the characteristic features of non Hermitian PT{\cal{PT}} symmetric systems --- viz., left / right asymmetry and anomalous behaviour at spectral singularity, are preserved even in the presence of pdem. The possibility of charge conservation is also discussed.Comment: 12 pages, including 6 figures; Journal of Physics A : Math. Theor. (2012

    Auxiliary field method and analytical solutions of the Schr\"{o}dinger equation with exponential potentials

    Full text link
    The auxiliary field method is a new and efficient way to compute approximate analytical eigenenergies and eigenvectors of the Schr\"{o}dinger equation. This method has already been successfully applied to the case of central potentials of power-law and logarithmic forms. In the present work, we show that the Schr\"{o}dinger equation with exponential potentials of the form αrλexp(βr)-\alpha r^\lambda \exp(-\beta r) can also be analytically solved by using the auxiliary field method. Formulae giving the critical heights and the energy levels of these potentials are presented. Special attention is drawn on the Yukawa potential and the pure exponential one

    Correlated two-particle scattering on finite cavities

    Full text link
    The correlated two-particle problem is solved analytically in the presence of a finite cavity. The method is demonstrated here in terms of exactly solvable models for both the cavity as well as the two-particle correlation where the two-particle potential is chosen in separable form. The two-particle phase shift is calculated and compared to the single-particle one. The two-particle bound state behavior is discussed and the influence of the cavity on the binding properties is calculated.Comment: Derivation shortened and corrected, 14 pages 10 figure

    The Woods-Saxon Potential in the Dirac Equation

    Get PDF
    The two-component approach to the one-dimensional Dirac equation is applied to the Woods-Saxon potential. The scattering and bound state solutions are derived and the conditions for a transmission resonance (when the transmission coefficient is unity) and supercriticality (when the particle bound state is at E=-m) are then derived. The square potential limit is discussed. The recent result that a finite-range symmetric potential barrier will have a transmission resonance of zero-momentum when the corresponding well supports a half-bound state at E=-m is demonstrated.Comment: 8 pages, 4 figures. Submitted to JPhys
    corecore