10,964 research outputs found
Pear-shaped lesion of the fossa of Rosenmüller
Retention cyst of the pharyngeal mucosal space is an accumulation of trapped mucous in the mucosa or adenoids of the pharynx. It is a benign lesion, often seen on routine imaging of the head and spine. It is typically a simple cyst originating from the pharyngeal mucosa, without invasion of the surrounding structures. It is important not to misinterpret a retention cyst as a malignant tumor. Patients are usually asymptomatic and do not need treatment
Growth and trace metal accumulation of two Salix clones on sediment-derived soils with increasing contamination levels
Evolution of twin-beam in active optical media
We study the evolution of twin-beam propagating inside active media that may
be used to establish a continuous variable entangled channel between two
distant users. In particular, we analyze how entanglement is degraded during
propagation, and determine a threshold value for the interaction time, above
which the state become separable, and thus useless for entanglement based
manipulations. We explicitly calculate the fidelity for coherent state
teleportation and show that it is larger than one half for the whole range of
parameters preserving entanglemenent.Comment: several misprints correcte
Heavy metal contents in surface soils along the Upper Scheldt river (Belgium) affected by historical upland disposal of dredged materials
Spin injection and spin accumulation in permalloy-copper mesoscopic spin valves
We study the electrical injection and detection of spin currents in a lateral
spin valve device, using permalloy (Py) as ferromagnetic injecting and
detecting electrodes and copper (Cu) as non-magnetic metal. Our multi-terminal
geometry allows us to experimentally distinguish different magneto resistance
signals, being 1) the spin valve effect, 2) the anomalous magneto resistance
(AMR) effect and 3) Hall effects. We find that the AMR contribution of the Py
contacts can be much bigger than the amplitude of the spin valve effect, making
it impossible to observe the spin valve effect in a 'conventional' measurement
geometry. However, these 'contact' magneto resistance signals can be used to
monitor the magnetization reversal process, making it possible to determine the
magnetic switching fields of the Py contacts of the spin valve device. In a
'non local' spin valve measurement we are able to completely isolate the spin
valve signal and observe clear spin accumulation signals at T=4.2 K as well as
at room temperature. We obtain spin diffusion lengths in copper of 1 micrometer
and 350 nm at T=4.2 K and room temperature respectively.Comment: 8 pages (incl. figures), 7 figures, RevTex, conferenc
Thermal Equilibration of 176-Lu via K-Mixing
In astrophysical environments, the long-lived (\T_1/2 = 37.6 Gy) ground state
of 176-Lu can communicate with a short-lived (T_1/2 = 3.664 h) isomeric level
through thermal excitations. Thus, the lifetime of 176-Lu in an astrophysical
environment can be quite different than in the laboratory. We examine the
possibility that the rate of equilibration can be enhanced via K-mixing of two
levels near E_x = 725 keV and estimate the relevant gamma-decay rates. We use
this result to illustrate the effect of K-mixing on the effective stellar
half-life. We also present a network calculation that includes the
equilibrating transitions allowed by K-mixing. Even a small amount of K-mixing
will ensure that 176-Lu reaches at least a quasi-equilibrium during an
s-process triggered by the 22-Ne neutron source.Comment: 9 pages, 6 figure
Pure single photons from a trapped atom source
Single atoms or atom-like emitters are the purest source of on-demand single
photons, they are intrinsically incapable of multi-photon emission. To
demonstrate this degree of purity we have realized a tunable, on-demand source
of single photons using a single ion trapped at the common focus of high
numerical aperture lenses. Our trapped-ion source produces single-photon pulses
at a rate of 200 kHz with g, without any
background subtraction. The corresponding residual background is accounted for
exclusively by detector dark counts. We further characterize the performance of
our source by measuring the violation of a non-Gaussian state witness and show
that its output corresponds to ideal attenuated single photons. Combined with
current efforts to enhance collection efficiency from single emitters, our
results suggest that single trapped ions are not only ideal stationary qubits
for quantum information processing, but promising sources of light for scalable
optical quantum networks.Comment: 7 pages plus one page supplementary materia
Continuous-variable quantum non-demolishing interaction at a distance
A feasible setup of continuous-variable (CV) quantum non-demolishing (QND)
interaction at a distance is proposed. If two distant experimentalists are able
to locally perform identical QND interactions then the proposed realization
requires only a single quantum channel and classical communication between
them. A possible implementation of the proposed setup in recent quantum optical
laboratories is discussed and an influence of Gaussian noise in the quantum
channel on a quality of the implementation is analyzed. An efficient
realization of the QND interaction at a distance can be a basic step to
possible distributed quantum CV experiments between the distant laboratories.Comment: 5 pages, 2 figure
- …
