5,997 research outputs found
Relative resilience to noise of standard and sequential approaches to measurement-based quantum computation
A possible alternative to the standard model of measurement-based quantum
computation (MBQC) is offered by the sequential model of MBQC -- a particular
class of quantum computation via ancillae. Although these two models are
equivalent under ideal conditions, their relative resilience to noise in
practical conditions is not yet known. We analyze this relationship for various
noise models in the ancilla preparation and in the entangling-gate
implementation. The comparison of the two models is performed utilizing both
the gate infidelity and the diamond distance as figures of merit. Our results
show that in the majority of instances the sequential model outperforms the
standard one in regard to a universal set of operations for quantum
computation. Further investigation is made into the performance of sequential
MBQC in experimental scenarios, thus setting benchmarks for possible cavity-QED
implementations.Comment: 11 pages, 11 figures; close to published versio
The Unimodal Distribution Of Blue Straggler Stars in M75 (NGC 6864)
We have used a combination of multiband high-resolution and wide-field
ground-based observations to image the Galactic globular cluster M75 (NGC
6864). The extensive photometric sample covers the entire cluster extension,
from the very central regions out to the tidal radius, allowing us to determine
the center of gravity and to construct the most extended star density profile
ever published for this cluster. We also present the first detailed star counts
in the very inner regions. The star density profile is well re-produced by a
standard King model with core radius r_c ~ 5.4" and intermediate-high
concentration c ~ 1.75. The present paper presents a detailed study of the BSS
population and its radial distribution. A total number of 62 bright BSSs (with
m_F255W < 21, corresponding to m_F555W < 20) has been identified, and they have
been found to be highly segregated in the cluster core. No significant upturn
in the BSS frequency has been observed in the outskirts of M75, in contrast to
several other clusters studied with the same technique. This observational fact
is quite similar to what has been found in M79 (NGC 1904) by Lanzoni et al.
(2007a). Indeed the BSS radial distributions in the two clusters is
qualitatively very similar, even if in M75 the relative BSS frequency seems to
decrease significantly faster than in M79: indeed it decreases by a factor of 5
(from 3.4 to 0.7) within 1 r_c. Such evidence indicate that the vast majority
of the cluster heavy stars (binaries) have already sunk to the core.Comment: ApJ accepted, 10 pages, 11 figures, 2 table
The optical companion to the binary millisecond pulsar J1824-2452H in the globular cluster M28
We report on the optical identification of the companion star to the
eclipsing millisecond pulsar PSR J1824-2452H in the galactic globular cluster
M28 (NGC 6626). This star is at only 0.2" from the nominal position of the
pulsar and it shows optical variability (~ 0.25 mag) that nicely correlates
with the pulsar orbital period. It is located on the blue side of the cluster
main sequence, ~1.5 mag fainter than the turn-off point. The observed light
curve shows two distinct and asymmetric minima, suggesting that the companion
star is suffering tidal distortion from the pulsar. This discovery increases
the number of non-degenerate MSP companions optically identified so far in
globular clusters (4 out of 7), suggesting that these systems could be a common
outcome of the pulsar recycling process, at least in dense environments where
they can be originated by exchange interactions.Comment: accepted for publication on ApJ, 17 pages, 5 figure
The origin of the spurious iron spread in the globular cluster NGC 3201
NGC 3201 is a globular cluster suspected to have an intrinsic spread in the
iron content. We re-analysed a sample of 21 cluster stars observed with
UVES-FLAMES at the Very Large Telescope and for which Simmerer et al. found a
0.4 dex wide [Fe/H] distribution with a metal-poor tail. We confirmed that when
spectroscopic gravities are adopted, the derived [Fe/H] distribution spans ~0.4
dex. On the other hand, when photometric gravities are used, the metallicity
distribution from Fe I lines remains large, while that derived from Fe II lines
is narrow and compatible with no iron spread. We demonstrate that the
metal-poor component claimed by Simmerer et al. is composed by asymptotic giant
branch stars that could be affected by non local thermodynamical equilibrium
effects driven by iron overionization. This leads to a decrease of the Fe I
abundance, while leaving the Fe II abundance unaltered. A similar finding has
been already found in asymptotic giant branch stars of the globular clusters M5
and 47 Tucanae. We conclude that NGC 3201 is a normal cluster, with no evidence
of intrinsic iron spread.Comment: Accepted for publication by ApJ, 7 pages, 4 figure
The optical counterpart to the X-ray transient IGR J18245-2452 in the globular cluster M28
We report on the identification of the optical counterpart to the recently
detected INTEGRAL transient IGR J18245-2452 in the Galactic globular cluster
M28. From the analysis of a multi epoch HST dataset we have identified a
strongly variable star positionally coincident with the radio and Chandra X-ray
sources associated to the INTEGRAL transient. The star has been detected during
both a quiescent and an outburst state. In the former case it appears as a
faint, unperturbed main sequence star, while in the latter state it is about
two magnitudes brighter and slightly bluer than main sequence stars. We also
detected Halpha excess during the outburst state, suggestive of active
accretion processes by the neutron star.Comment: Accepted for publication by ApJ; 15 pages, 4 figures, 1 tabl
Another brick in understanding chemical and kinematical properties of BSSs: NGC 6752
We used high-resolution spectra acquired with the multifiber facility FLAMES
at the Very Large Telescope of the European Southern Observatory to investigate
the chemical and kinematical properties of a sample of 22 Blue Straggler Stars
(BSSs) and 26 red giant branch stars in the nearby globular cluster NGC 6752.
We measured radial and rotational velocities and Fe, O and C abundances.
According to radial velocities, metallicity and proper motions we identified 18
BSSs as likely cluster members. We found that all the BSSs rotate slowly (less
than 40 km/s), similar to the findings in 47 Tucanae, NGC 6397 and M30. The Fe
abundance analysis reveals the presence of 3 BSSs affected by radiative
levitation (showing [Fe/H] significantly higher than that measured in "normal"
cluster stars), confirming that element transport mechanisms occur in the
photosphere of BSSs hotter than 8000 K. Finally, BSS C and O abundances are
consistent with those measured in dwarf stars. No C and O depletion ascribable
to mass transfer processes has been found on the atmospheres of the studied
BSSs (at odds with previous results for 47 Tucanae and M30), suggesting the
collisional origin for BSSs in NGC 6752 or that the CO-depletion is a transient
phenomenon.Comment: ApJ accepte
Modeling the chemical evolution of Omega Centauri using three-dimensional hydrodynamical simulations
We present a hydrodynamical and chemical model for the globular cluster Omega
Cen, under the assumption that it is the remnant of an ancient dwarf spheroidal
galaxy (dSph), the bulk of which was disrupted and accreted by our Galaxy ~10
Gyr ago. We highlight the very different roles played by Type II and Type Ia
supernovae (SNe) in the chemical enrichment of the inner regions of the
putative parent dSph. While the SNe II pollute the interstellar medium rather
uniformly, the SNe Ia ejecta may remain confined inside dense pockets of gas as
long as succesive SNe II explosions spread them out. Stars forming in such
pockets have lower alpha-to-iron ratios than the stars forming elsewhere. Owing
to the inhomogeneous pollution by SNe Ia, the metal distribution of the stars
in the central region differs substantially from that of the main population of
the dwarf galaxy, and resembles that observed in Omega Cen. This inhomogeneous
mixing is also responsible for a radial segregation of iron-rich stars with
depleted [alpha/Fe] ratios, as observed in some dSphs. Assuming a star
formation history of ~1.5 Gyr, our model succeeds in reproducing both the iron
and calcium distributions observed in Omega Cen and the main features observed
in the empirical alpha/Fe versus Fe/H plane. Finally, our model reproduces the
overall spread of the color-magnitude diagram, but fails in reproducing the
morphology of the SGB-a and the double morphology of the main sequence.
However, the inhomogeneous pollution reduces (but does not eliminate) the need
for a significantly enhanced helium abundance to explain the anomalous position
of the blue main sequence. Further models taking into account the dynamical
interaction of the parent dwarf galaxy with the Milky Way and the effect of AGB
pollution will be required.Comment: 15 pages, 13 figures. MNRAS accepte
No evidence of mass segregation in the low mass Galactic globular cluster NGC 6101
We used a combination of Hubble Space Telescope and ground based data to
probe the dynamical state of the low mass Galactic globular cluster NGC 6101.
We have re-derived the structural parameters of the cluster by using star
counts and we find that it is about three times more extended than thought
before. By using three different indicators, namely the radial distribution of
Blue Straggler Stars, that of Main Sequence binaries and the luminosity (mass)
function, we demonstrated that NGC 6101 shows no evidence of mass segregation,
even in the innermost regions. Indeed, both the BSS and the binary radial
distributions fully resemble that of any other cluster population. In addition
the slope of the luminosity (mass) functions does not change with the distance,
as expected for non relaxed stellar systems. NGC 6101 is one of the few
globulars where the absence of mass segregation has been observed so far. This
result provides additional support to the use of the "dynamical clock"
calibrated on the radial distribution of the Blue Stragglers as a powerful
indicator of the cluster dynamical age.Comment: Accepted for publication by ApJ; 33 pages, 13 figure
- …
