772 research outputs found

    Systematic deciphering of cancer genome networks

    Get PDF
    When growth regulatory genes are damaged in a cell, it may become cancerous. Current technological advances in the last decade have allowed the characterization of the whole genome of these cells by directly or indirectly measuring DNA changes. Complementary analyses were developed to make sense of the massive amounts of data generated. A large majority of these analyses were developed to construct interaction networks between genes from, primarily, expression array data. We review the current technologies and analyses that have developed in the last decade. We further argue that as cancer genomics evolves from single gene validations to gene network inferences, new analyses must be developed for the different technological platforms

    Dynamics at a smeared phase transition

    Full text link
    We investigate the effects of rare regions on the dynamics of Ising magnets with planar defects, i.e., disorder perfectly correlated in two dimensions. In these systems, the magnetic phase transition is smeared because static long-range order can develop on isolated rare regions. We first study an infinite-range model by numerically solving local dynamic mean-field equations. Then we use extremal statistics and scaling arguments to discuss the dynamics beyond mean-field theory. In the tail region of the smeared transition the dynamics is even slower than in a conventional Griffiths phase: the spin autocorrelation function decays like a stretched exponential at intermediate times before approaching the exponentially small equilibrium value following a power law at late times.Comment: 10 pages, 8eps figures included, final version as publishe

    Universal Negative Poisson Ratio of Self Avoiding Fixed Connectivity Membranes

    Get PDF
    We determine the Poisson ratio of self-avoiding fixed-connectivity membranes, modeled as impenetrable plaquettes, to be sigma=-0.37(6), in statistical agreement with the Poisson ratio of phantom fixed-connectivity membranes sigma=-0.32(4). Together with the equality of critical exponents, this result implies a unique universality class for fixed-connectivity membranes. Our findings thus establish that physical fixed-connectivity membranes provide a wide class of auxetic (negative Poisson ratio) materials with significant potential applications in materials science.Comment: 4 pages, 3 figures, LaTeX (revtex) Published version - title changed, one figure improved and one reference change

    COVID-19 vaccines in patients with cancer:immunogenicity, efficacy and safety

    Get PDF
    Patients with cancer have a higher risk of severe coronavirus disease (COVID-19) and associated mortality than the general population. Owing to this increased risk, patients with cancer have been prioritized for COVID-19 vaccination globally, for both primary and booster vaccinations. However, given that these patients were not included in the pivotal clinical trials, considerable uncertainty remains regarding vaccine efficacy, and the extent of humoral and cellular immune responses in these patients, as well as the risks of vaccine-related adverse events. In this Review, we summarize the current knowledge generated in studies conducted since COVID-19 vaccines first became available. We also highlight critical points that might affect vaccine efficacy in patients with cancer in the future

    Fluctuation-Induced Interactions between Rods on a Membrane

    Full text link
    We consider the interaction between two rods embedded in a fluctuating surface. The modification of fluctuations by the rods leads to an attractive long-range interaction between them. We consider fluctuations governed by either surface tension (films) or bending rigidity (membranes). In both cases the interaction falls off with the separation of the rods as 1/R41/R^4. The orientational part of the interaction is proportional to cos2[θ1+θ2]\cos^2\left[ \theta_1+\theta_2 \right] in the former case, and to cos2[2(θ1+θ2)]\cos^2\left[ 2\left(\theta_1+\theta_2\right) \right] in the latter, where θ1\theta_1 and θ2\theta_2 are angles between the rods and the line joining them. These interactions are somewhat reminiscent of dipolar forces and will tend to align collections of such rods into chains.Comment: REVTEX, 14 pages, with 2 Postscript figure

    Lipid peroxidation and glutathione peroxidase activity relationship in breast cancer depends on functional polymorphism of GPX1

    Get PDF
    Functional SNPs selected for the study. Table S2. Restriction fragment analysis for BRCA1 mutations. Table S3. Oxidative stress parameters in breast cancer cases according to treatment. (DOCX 31 kb

    Inhibiting WNT and NOTCH in renal cancer stem cells and the implications for human patients

    Get PDF
    Current treatments for clear cell renal cell cancer (ccRCC) are insufficient because two-thirds of patients with metastases progress within two years. Here we report the identification and characterization of a cancer stem cell (CSC) population in ccRCC. CSCs are quantitatively correlated with tumor aggressiveness and metastasis. Transcriptional profiling and single cell sequencing reveal that these CSCs exhibit an activation of WNT and NOTCH signaling. A significant obstacle to the development of rational treatments has been the discrepancy between model systems and the in vivo situation of patients. To address this, we use CSCs to establish non-adherent sphere cultures, 3D tumor organoids, and xenografts. Treatment with WNT and NOTCH inhibitors blocks the proliferation and self-renewal of CSCs in sphere cultures and organoids, and impairs tumor growth in patient-derived xenografts in mice. These findings suggest that our approach is a promising route towards the development of personalized treatments for individual patients

    Correlation functions near Modulated and Rough Surfaces

    Get PDF
    In a system with long-ranged correlations, the behavior of correlation functions is sensitive to the presence of a boundary. We show that surface deformations strongly modify this behavior as compared to a flat surface. The modified near surface correlations can be measured by scattering probes. To determine these correlations, we develop a perturbative calculation in the deformations in height from a flat surface. Detailed results are given for a regularly patterned surface, as well as for a self-affinely rough surface with roughness exponent ζ\zeta. By combining this perturbative calculation in height deformations with the field-theoretic renormalization group approach, we also estimate the values of critical exponents governing the behavior of the decay of correlation functions near a self-affinely rough surface. We find that for the interacting theory, a large enough ζ\zeta can lead to novel surface critical behavior. We also provide scaling relations between roughness induced critical exponents for thermodynamic surface quantities.Comment: 31 pages, 2 figure

    Rare region effects at classical, quantum, and non-equilibrium phase transitions

    Full text link
    Rare regions, i.e., rare large spatial disorder fluctuations, can dramatically change the properties of a phase transition in a quenched disordered system. In generic classical equilibrium systems, they lead to an essential singularity, the so-called Griffiths singularity, of the free energy in the vicinity of the phase transition. Stronger effects can be observed at zero-temperature quantum phase transitions, at nonequilibrium phase transitions, and in systems with correlated disorder. In some cases, rare regions can actually completely destroy the sharp phase transition by smearing. This topical review presents a unifying framework for rare region effects at weakly disordered classical, quantum, and nonequilibrium phase transitions based on the effective dimensionality of the rare regions. Explicit examples include disordered classical Ising and Heisenberg models, insulating and metallic random quantum magnets, and the disordered contact process.Comment: Topical review, 68 pages, 14 figures, final version as publishe

    Identification of miR-21-5p and miR-210-3p serum levels as biomarkers for patients with papillary renal cell carcinoma: a multicenter analysis

    Get PDF
    BACKGROUND: Expression of circulating serum microRNAs has not been studied in a cohort of patients with papillary renal cell carcinoma (pRCC) so far. We hypothesized that miRNA deregulation in malignant tissue is reflected in serum and could be used for non-invasive diagnosis of pRCC as well as differentiation between type 1 and type 2 pRCC. METHODS: We selected 11 differentially regulated miRNAs from the Cancer Genome Atlas (TCGA) pRCC data set as potential serum validation candidates. Serum miRNA expression was determined by qRT-PCR in a total of 34 pRCC type 1, 33 pRCC type 2 and 33 control subjects of three german high-volume medical centers. RESULTS: Heatmap and principal component analysis showed that miRNA expression did not cluster the samples into distinct sample groups and that miRNA levels did not significantly discriminate healthy individuals from patients with pRCC, nor between patients with type 1 and type 2 pRCC. However, miR-21-5p levels were significantly increased in patients with advanced pRCC (>pT3, and/or pN+ and/or pM+) in comparison to localized pRCC. Moreover, adding the expression of miR-210-3p, which was significantly down-regulated in localized pRCC sera in comparison to healthy sera, additionally increased diagnostic accuracy in our study cohort. CONCLUSIONS: In our multicenter cohort, we were not able to identify a single miRNA serum marker for pRCC including its subclasses. However, our study revealed that miR-21-5p levels were elevated in advanced disease (with added diagnostic accuracy via addition of miR-210-3p expression), proposing these two miRs as potential biomarkers in pRCC
    corecore