341 research outputs found
Recommended from our members
Beyond glucose and Warburg: finding the sweet spot in cancer metabolism models
Advances in cancer biology have highlighted metabolic reprogramming as an essential aspect of tumorigenesis and progression. However, recent efforts to study tumor metabolism in vivo have identified some disconnects between in vitro and in vivo biology. This is due, at least in part, to the simplified nature of cell culture models and highlights a growing need to utilize more physiologically relevant approaches to more accurately assess tumor metabolism. In this review, we outline the evolution of our understanding of cancer metabolism and discuss some discrepancies between in vitro and in vivo conditions. We describe how the development of physiological media, in combination with advanced culturing methods, can bridge the gap between in vitro and in vivo metabolism
A process model of the formation of spatial presence experiences
In order to bridge interdisciplinary differences in Presence research and to establish connections between Presence and “older” concepts of psychology and communication, a theoretical model of the formation of Spatial Presence is proposed. It is applicable to the exposure to different media and intended to unify the existing efforts to develop a theory of Presence. The model includes assumptions about attention allocation, mental models, and involvement, and considers the role of media factors and user characteristics as well, thus incorporating much previous work. It is argued that a commonly accepted model of Spatial Presence is the only solution to secure further progress within the international, interdisciplinary and multiple-paradigm community of Presence research
LKB1 and AMPK and the cancer-metabolism link - ten years after
The identification of a complex containing the tumor suppressor LKB1 as the critical upstream kinase required for the activation of AMP-activated protein kinase (AMPK) by metabolic stress was reported in an article in Journal of Biology in 2003. This finding represented the first clear link between AMPK and cancer. Here we briefly discuss how this discovery came about, and describe some of the insights, especially into the role of AMPK in cancer, that have followed from it. In September 2003, our groups published a joint paper [1] in Journal of Biology (now BMC Biology) that identified the long-sought and elusive upstream kinase acting on AMP-activated protein kinase (AMPK) as a complex containing LKB1, a known tumor suppressor. Similar findings were reported at about the same time by David Carling and Marian Carlson [2] and by Reuben Shaw and Lew Cantley [3]; at the time of writing these three papers have received between them a total of over 2,000 citations. These findings provided a direct link between a protein kinase, AMPK, which at the time was mainly associated with regulation of metabolism, and another protein kinase, LKB1, which was known from genetic studies to be a tumor suppressor. While the idea that cancer is in part a metabolic disorder (first suggested by Warburg in the 1920s [4]) is well recognized today [5], this was not the case in 2003, and our paper perhaps contributed towards its renaissance. The aim of this short review is to recall how we made the original finding, and to discuss some of the directions that these findings have taken the field in the ensuing ten years
CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability
A characteristic of memory T (TM) cells is their ability to mount faster and stronger responses to reinfection than naïve T (TN) cells do in response to an initial infection. However, the mechanisms that allow this rapid recall are not completely understood. We found that CD8 TM cells have more mitochondrial mass than CD8 TN cells and, that upon activation, the resulting secondary effector T (TE) cells proliferate more quickly, produce more cytokines, and maintain greater ATP levels than primary effector T cells. We also found that after activation, TM cells increase oxidative phosphorylation and aerobic glycolysis and sustain this increase to a greater extent than TN cells, suggesting that greater mitochondrial mass in TM cells not only promotes oxidative capacity, but also glycolytic capacity. We show that mitochondrial ATP is essential for the rapid induction of glycolysis in response to activation and the initiation of proliferation of both TN and TM cells. We also found that fatty acid oxidation is needed for TM cells to rapidly respond upon restimulation. Finally, we show that dissociation of the glycolysis enzyme hexokinase from mitochondria impairs proliferation and blocks the rapid induction of glycolysis upon T-cell receptor stimulation in TM cells. Our results demonstrate that greater mitochondrial mass endows TM cells with a bioenergetic advantage that underlies their ability to rapidly recall in response to reinfection
Postural Hypo-Reactivity in Autism is Contingent on Development and Visual Environment: A Fully Immersive Virtual Reality Study
Although atypical motor behaviors have been associated with autism, investigations regarding their possible origins are scarce. This study assessed the visual and vestibular components involved in atypical postural reactivity in autism. Postural reactivity and stability were measured for younger (12–15 years) and older (16–33 years) autistic participants in response to a virtual tunnel oscillating at different frequencies. At the highest oscillation frequency, younger autistic participants showed significantly less instability compared to younger typically-developing participants; no such group differences were evidenced for older participants. Additionally, no significant differences in postural behavior were found between all 4 groups when presented with static or without visual information. Results confirm that postural hypo-reactivity to visual information is present in autism, but is contingent on both visual environment and development
Ubiquitous Crossmodal Stochastic Resonance in Humans: Auditory Noise Facilitates Tactile, Visual and Proprioceptive Sensations
BACKGROUND: Stochastic resonance is a nonlinear phenomenon whereby the addition of noise can improve the detection of weak stimuli. An optimal amount of added noise results in the maximum enhancement, whereas further increases in noise intensity only degrade detection or information content. The phenomenon does not occur in linear systems, where the addition of noise to either the system or the stimulus only degrades the signal quality. Stochastic Resonance (SR) has been extensively studied in different physical systems. It has been extended to human sensory systems where it can be classified as unimodal, central, behavioral and recently crossmodal. However what has not been explored is the extension of this crossmodal SR in humans. For instance, if under the same auditory noise conditions the crossmodal SR persists among different sensory systems. METHODOLOGY/PRINCIPAL FINDINGS: Using physiological and psychophysical techniques we demonstrate that the same auditory noise can enhance the sensitivity of tactile, visual and propioceptive system responses to weak signals. Specifically, we show that the effective auditory noise significantly increased tactile sensations of the finger, decreased luminance and contrast visual thresholds and significantly changed EMG recordings of the leg muscles during posture maintenance. CONCLUSIONS/SIGNIFICANCE: We conclude that crossmodal SR is a ubiquitous phenomenon in humans that can be interpreted within an energy and frequency model of multisensory neurons spontaneous activity. Initially the energy and frequency content of the multisensory neurons' activity (supplied by the weak signals) is not enough to be detected but when the auditory noise enters the brain, it generates a general activation among multisensory neurons of different regions, modifying their original activity. The result is an integrated activation that promotes sensitivity transitions and the signals are then perceived. A physiologically plausible model for crossmodal stochastic resonance is presented
Recommended from our members
<i>Trans</i>-vaccenic acid reprograms CD8<sup>+</sup> T cells and anti-tumour immunity
Diet-derived nutrients are inextricably linked to human physiology by providing energy and biosynthetic building blocks and by functioning as regulatory molecules. However, the mechanisms by which circulating nutrients in the human body influence specific physiological processes remain largely unknown. Here we use a blood nutrient compound library-based screening approach to demonstrate that dietary trans-vaccenic acid (TVA) directly promotes effector CD8+ T cell function and anti-tumour immunity in vivo. TVA is the predominant form of trans-fatty acids enriched in human milk, but the human body cannot produce TVA endogenously. Circulating TVA in humans is mainly from ruminant-derived foods including beef, lamb and dairy products such as milk and butter, but only around 19% or 12% of dietary TVA is converted to rumenic acid by humans or mice, respectively. Mechanistically, TVA inactivates the cell-surface receptor GPR43, an immunomodulatory G protein-coupled receptor activated by its short-chain fatty acid ligands. TVA thus antagonizes the short-chain fatty acid agonists of GPR43, leading to activation of the cAMP–PKA–CREB axis for enhanced CD8+ T cell function. These findings reveal that diet-derived TVA represents a mechanism for host-extrinsic reprogramming of CD8+ T cells as opposed to the intrahost gut microbiota-derived short-chain fatty acids. TVA thus has translational potential for the treatment of tumours
GLP-1 receptor signalling promotes β-cell glucose metabolism via mTOR-dependent HIF-1α activation
Glucagon-like peptide-1 (GLP-1) promotes insulin secretion from pancreatic ß-cells in a glucose dependent manner. Several pathways mediate this action by rapid, kinase phosphorylation-dependent, but gene expression-independent mechanisms. Since GLP-1-induced insulin secretion requires glucose metabolism, we aimed to address the hypothesis that GLP-1 receptor (GLP-1R) signalling can modulate glucose uptake and utilization in ß-cells. We have assessed various metabolic parameters after short and long exposure of clonal BRIN-BD11 ß-cells and rodent islets to the GLP-1R agonist Exendin-4 (50 nM). Here we report for the first time that prolonged stimulation of the GLP-1R for 18 hours promotes metabolic reprogramming of ß-cells. This is evidenced by up-regulation of glycolytic enzyme expression, increased rates of glucose uptake and consumption, as well as augmented ATP content, insulin secretion and glycolytic flux after removal of Exendin-4. In our model, depletion of Hypoxia-Inducible Factor 1 alpha (HIF-1a) impaired the effects of Exendin-4 on glucose metabolism, while pharmacological inhibition of Phosphoinositide 3-kinase (PI3K) or mTOR completely abolished such effects. Considering the central role of glucose catabolism for stimulus-secretion coupling in ß-cells, our findings suggest that chronic GLP-1 actions on insulin secretion include elevated ß-cell glucose metabolism. Moreover, our data reveal novel aspects of GLP-1 stimulated insulin secretion involving de novo gene expression
Effect of nodule count and austempering heat treatment on segregation behavior of alloying elements in ductile cast iron
- …
