19,379 research outputs found

    Observational manifestations of solar magneto-convection -- center-to-limb variation

    Full text link
    We present the first center-to-limb G-band images synthesized from high resolution simulations of solar magneto-convection. Towards the limb the simulations show "hilly" granulation with dark bands on the far side, bright granulation walls and striated faculae, similar to observations. At disk center G-band bright points are flanked by dark lanes. The increased brightness in magnetic elements is due to their lower density compared with the surrounding intergranular medium. One thus sees deeper layers where the temperature is higher. At a given geometric height, the magnetic elements are cooler than the surrounding medium. In the G-band, the contrast is further increased by the destruction of CH in the low density magnetic elements. The optical depth unity surface is very corrugated. Bright granules have their continuum optical depth unity 80 km above the mean surface, the magnetic elements 200-300 km below. The horizontal temperature gradient is especially large next to flux concentrations. When viewed at an angle, the deep magnetic elements optical surface is hidden by the granules and the bright points are no longer visible, except where the "magnetic valleys" are aligned with the line of sight. Towards the limb, the low density in the strong magnetic elements causes unit line-of-sight optical depth to occur deeper in the granule walls behind than for rays not going through magnetic elements and variations in the field strength produce a striated appearance in the bright granule walls.Comment: To appear in ApJL. 6 pages 4 figure

    Polarization and Charge Transfer in the Hydration of Chloride Ions

    Full text link
    A theoretical study of the structural and electronic properties of the chloride ion and water molecules in the first hydration shell is presented. The calculations are performed on an ensemble of configurations obtained from molecular dynamics simulations of a single chloride ion in bulk water. The simulations utilize the polarizable AMOEBA force field for trajectory generation, and MP2-level calculations are performed to examine the electronic structure properties of the ions and surrounding waters in the external field of more distant waters. The ChelpG method is employed to explore the effective charges and dipoles on the chloride ions and first-shell waters. The Quantum Theory of Atoms in Molecules (QTAIM) is further utilized to examine charge transfer from the anion to surrounding water molecules. From the QTAIM analysis, 0.2 elementary charges are transferred from the ion to the first-shell water molecules. The default AMOEBA model overestimates the average dipole moment magnitude of the ion compared with the estimated quantum mechanical value. The average magnitude of the dipole moment of the water molecules in the first shell treated at the MP2 level, with the more distant waters handled with an AMOEBA effective charge model, is 2.67 D. This value is close to the AMOEBA result for first-shell waters (2.72 D) and is slightly reduced from the bulk AMOEBA value (2.78 D). The magnitude of the dipole moment of the water molecules in the first solvation shell is most strongly affected by the local water-water interactions and hydrogen bonds with the second solvation shell, rather than by interactions with the ion.Comment: Slight revision, in press at J. Chem. Phy

    Program on stimulating operational private sector use of Earth observation satellite information

    Get PDF
    Ideas for new businesses specializing in using remote sensing and computerized spatial data systems were developd. Each such business serves as an 'information middleman', buying raw satellite or aircraft imagery, processing these data, combining them in a computer system with customer-specific information, and marketing the resulting information products. Examples of the businesses the project designed are: (1) an agricultural facility site evaluation firm; (2) a mass media grocery price and supply analyst and forecaster; (3) a management service for privately held woodlots; (4) a brokerage for insulation and roofing contractors, based on infrared imagery; (5) an expanded real estate information service. In addition, more than twenty-five other commercially attractive ideas in agribusiness, forestry, mining, real estate, urban planning and redevelopment, and consumer information were created. The commercial feasibility of the five business was assessed. This assessment included market surveys, revenue projections, cost analyses, and profitability studies. The results show that there are large and enthusiastic markets willing to pay for the services these businesses offer, and that the businesses could operate profitably

    Solar Oscillations and Convection: II. Excitation of Radial Oscillations

    Full text link
    Solar p-mode oscillations are excited by the work of stochastic, non-adiabatic, pressure fluctuations on the compressive modes. We evaluate the expression for the radial mode excitation rate derived by Nordlund and Stein (Paper I) using numerical simulations of near surface solar convection. We first apply this expression to the three radial modes of the simulation and obtain good agreement between the predicted excitation rate and the actual mode damping rates as determined from their energies and the widths of their resolved spectral profiles. We then apply this expression for the mode excitation rate to the solar modes and obtain excellent agreement with the low l damping rates determined from GOLF data. Excitation occurs close to the surface, mainly in the intergranular lanes and near the boundaries of granules (where turbulence and radiative cooling are large). The non-adiabatic pressure fluctuations near the surface are produced by small instantaneous local imbalances between the divergence of the radiative and convective fluxes near the solar surface. Below the surface, the non-adiabatic pressure fluctuations are produced primarily by turbulent pressure fluctuations (Reynolds stresses). The frequency dependence of the mode excitation is due to effects of the mode structure and the pressure fluctuation spectrum. Excitation is small at low frequencies due to mode properties -- the mode compression decreases and the mode mass increases at low frequency. Excitation is small at high frequencies due to the pressure fluctuation spectrum -- pressure fluctuations become small at high frequencies because they are due to convection which is a long time scale phenomena compared to the dominant p-mode periods.Comment: Accepted for publication in ApJ (scheduled for Dec 10, 2000 issue). 17 pages, 27 figures, some with reduced resolution -- high resolution versions available at http://www.astro.ku.dk/~aake/astro-ph/0008048

    Solid-Solid Phase Transformations and Their Kinetics in Tiā€“Alā€“Nb Alloys

    Get PDF
    The application of light-weight intermetallic materials to address the growing interest and necessity for reduction of CO2 emissions and environmental concerns has led to intensive research into TiAl-based alloy systems. However, the knowledge about phase relations and transformations is still very incomplete. Therefore, the results presented here from systematic thermal analyses of phase transformations in 12 ternary Ti-Al-Nb alloys and one binary Ti-Al measured with 4ā€“5 different heating rates (0.8 to 10 Ā°C/min) give insights in the kinetics of the second-order type reaction of ordered (Ī²Ti)o to disordered (Ī²Ti) as well as the three first-order type transformations from Ti3Al to (Ī±Ti), Ļ‰o (Ti4NbAl3) to (Ī²Ti)o, and O (Ti2NbAl) to (Ī²Ti)o. The sometimes-strong heating rate dependence of the transformation temperatures is found to vary systematically in dependence on the complexity of the transformations. The dependence on heating rate is nonlinear in all cases and can be well described by a model for solid-solid phase transformations reported in the literature, which allows the determination of the equilibrium transformation temperatures
    • ā€¦
    corecore