47 research outputs found

    Quantum evolution across singularities

    Full text link
    Attempts to consider evolution across space-time singularities often lead to quantum systems with time-dependent Hamiltonians developing an isolated singularity as a function of time. Examples include matrix theory in certain singular time-dependent backgounds and free quantum fields on the two-dimensional compactified Milne universe. Due to the presence of the singularities in the time dependence, the conventional quantum-mechanical evolution is not well-defined for such systems. We propose a natural way, mathematically analogous to renormalization in conventional quantum field theory, to construct unitary quantum evolution across the singularity. We carry out this procedure explicitly for free fields on the compactified Milne universe and compare our results with the matching conditions considered in earlier work (which were based on the covering Minkowski space).Comment: revised with an emphasis on local counterterm subtraction rather than analyticity; version to be submitted for publicatio

    Light-like Big Bang singularities in string and matrix theories

    Full text link
    Important open questions in cosmology require a better understanding of the Big Bang singularity. In string and matrix theories, light-like analogues of cosmological singularities (singular plane wave backgrounds) turn out to be particularly tractable. We give a status report on the current understanding of such light-like Big Bang models, presenting both solved and open problems.Comment: 20 pages, invited review for Class. Quant. Grav; v3: section 2.3 shortened, discussion on DLCQ added in section 3.1, published versio

    p-branes on the waves

    Full text link
    We present a large family of simple, explicit ten-dimensional supergravity solutions describing extended extremal supersymmetric Ramond-Ramond p-branes embedded into time-dependent dilaton-gravity plane waves of an arbitrary (isotropic) profile, with the brane world-volume aligned parallel to the propagation direction of the wave. Generalizations to the non-extremal case are not analyzed explicitly, but can be pursued as indicated.Comment: 11 pages; v.2 minor notation changes, minor typos corrected (published version

    Can free strings propagate across plane wave singularities?

    Full text link
    We study free string propagation in families of plane wave geometries developing strong scale-invariant singularities in certain limits. We relate the singular limit of the evolution for all excited string modes to that of the center-of-mass motion (the latter existing for discrete values of the overall plane wave profile normalization). Requiring that the entire excitation energy of the string should be finite turns out to be quite restrictive and essentially excludes consistent propagation across the singularity, unless dimensionful scales are introduced at the singular locus (in an otherwise scale-invariant space-time).Comment: 24 pages; v.2: published version, minor clarifications adde

    Quantum evolution across singularities: the case of geometrical resolutions

    Full text link
    We continue the study of time-dependent Hamiltonians with an isolated singularity in their time dependence, describing propagation on singular space-times. In previous work, two of us have proposed a "minimal subtraction" prescription for the simplest class of such systems, involving Hamiltonians with only one singular term. On the other hand, Hamiltonians corresponding to geometrical resolutions of space-time tend to involve multiple operator structures (multiple types of dependence on the canonical variables) in an essential way. We consider some of the general properties of such (near-)singular Hamiltonian systems, and further specialize to the case of a free scalar field on a two-parameter generalization of the null-brane space-time. We find that the singular limit of free scalar field evolution exists for a discrete subset of the possible values of the two parameters. The coordinates we introduce reveal a peculiar reflection property of scalar field propagation on the generalized (as well as the original) null-brane. We further present a simple family of pp-wave geometries whose singular limit is a light-like hyperplane (discontinuously) reflecting the positions of particles as they pass through it.Comment: 25 pages, 1 figur

    A smooth bouncing cosmology with scale invariant spectrum

    Full text link
    We present a bouncing cosmology which evolves from the contracting to the expanding phase in a smooth way, without developing instabilities or pathologies and remaining in the regime of validity of 4d effective field theory. A nearly scale invariant spectrum of perturbations is generated during the contracting phase by an isocurvature scalar with a negative exponential potential and then converted to adiabatic. The model predicts a slightly blue spectrum, n_S >~ 1, no observable gravitational waves and a high (but model dependent) level of non-Gaussianities with local shape. The model represents an explicit and predictive alternative to inflation, although, at present, it is clearly less compelling.Comment: 20 pages, 1 fig. v2: references added, JCAP published versio

    Intersecting black branes in strong gravitational waves

    Full text link
    We consider intersecting black branes with strong gravitational waves propagating along their worldvolume in the context of supergravity theories. Both near-horizon and space-filling gravitational wave modes are included in our ansatz. The equations of motion (originally, partial differential equations) are shown to reduce to ordinary differential equations, which include a Toda-like system. For special arrangements of intersecting black branes, the Toda-like system becomes integrable, permitting a more thorough analysis of the gravitational equations of motion.Comment: 17 pages; v2: cosmetic improvements, published versio
    corecore