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Abstract  

This paper concerns the Wacker oxidation of ethylene by oxygen in the presence of water 

over supported Pd/VOx catalysts. High surface area porous supports were obtained from 

layer-structured materials, such as, montmorillonite (MT), laponite (LT) (smectites), and 

hydrotalcite (layered double hydroxide, LDH) by pillaring. Before introduction of Pd, 

supports MT and LDH were pillared by vanadia. The laponite was used in titania-pillared 

form (TiO2-LAP) as support of Pd/VOx active component. Acetaldehyde (AcH), acetic acid 

(AcOH) and CO2 were the products with yields and selectivities, depending on the reaction 

conditions and the properties of the applied catalyst. Under comparable conditions the pillared 

smectite catalysts gave higher AcH yield than the pillared LDH catalyst. UV-vis spectroscopic 

examination suggested that the pillared smectites contained polymeric chains of VO4, whereas 

only isolated monomeric VO4 species were present in the pillared LDH. The higher catalytic 

activity in the Wacker oxidation was attributed to the more favorable redox property of the 

polymeric than of the monomeric vanadia. The V
3+ 

ions in the polymeric species can reduce 

O2 to O
2-

 ions, whereas the obtained V
5+

 ions are ready to pass over O to Pd
0
 to generate PdO 

whereon the oxidation of the ethylene proceeds.  

 

Keywords: Wacker oxidation ∙ Supported Pd/VOx catalyst ∙ Pillared layered materials ∙ UV-

VIS spectroscopy H2-TPR 

 

1 Introduction 

 

 Acetaldehyde is a commodity chemical. By the end of the last century the world’s 

production of acetaldehyde attained 2.9 million tons/year. About 85% of this amount was 
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manufactured in plants exploiting the method, patented by the Wacker and Hoechst 

companies in 1959. The process involves bubbling mixture of ethylene and oxygen (air) 

through aqueous solution of homogeneous catalyst consisting of HCl, PdCl2 and CuCl2. In the 

first step of the reaction Pd
2+

 cations promote the nucleophyllic attack of alkene by water, the 

ethylene takes up an oxygen atom, and the Pd
2+

 gets reduced to Pd
0
. The role of co-catalyst 

Cu
2+

 ions is to selectively re-oxidize the Pd
0
 to Pd

2+
. The catalytic cycle is closed by the re-

oxidation of the resulting Cu
+ 

by O2 [1]. However, the liquid-phase homogeneous process has 

many disadvantages, such as the high corrosivity of HCl in the presence of oxygen, possible 

formation of undesired chlorinated by-products, difficult recovery of the products from 

solution, loss of palladium, etc. A solid catalyst that functions like the homogeneous catalytic 

system could overcome most of these drawbacks [2].  

 There have been a number of attempts to heterogenize the homogeneous Wacker 

catalyst system by binding an active complex onto a carrier material and, thereby, combine 

the advantages of the homogeneous and heterogeneous catalysts. Various oxides (Al2O3, SiO2, 

TiO2) [3-6] and carbon[7,8] were used as support. In these systems either vanadia [3-5] or 

copper [67-8] was the co-catalyst of palladium. Espeel et al.[9] used Cu-Pd exchanged Y 

zeolites to initiate selective AcH formation in the reaction of ethylene and oxygen. Terminal 

oxidation of alpha olefins was attained using Pd-MT catalyst in acid-free aqueous solution of 

CuCl2 and N,N-dimethylacetamide [10]. Porous glass was used by Arhancet [11] to adsorb 

palladium and copper salts and generate, thereby, a heterogenized Wacker-system. Recently 

active palladium/copper chloride composition, fixed to silica-supported liquid polymer 

medium, was used to make AcH by selective vapor phase oxidation of ethylene 12].  

With the objective of mitigating some engineering problems of the Wacker reaction a 

membrane reactor was developed by Frusteri et al. [13]. A Pd or Pt/carbon membrane was 

applied to separate an oxidizing liquid phase and a gas flow containing the reactant ethylene. 

The reaction was accompanied by a continuous countercurrant transport of the reactant and 

the products through the catalytically active membrane. 

 The present study shows that active heterogeneous Wacker type catalyst can be prepared 

by depositing Pd on vanadia-pillared layered materials, such as, smectites and LDH.  

 

2 Experimental 

 

2.1 Preparation of catalysts 
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 Smectite layers comprise of two tetrahedral SiO4 sheets sandwiching an octahedral AlO4 

sheet. Substitution of some Al
3+

 to Mg
2+

 or Li
+
 raises a negative charge on the layers, 

compensated by hydrated cations in the interlayer region. The interlayer ions can be 

exchanged by VO
2+

 cations [14]. When the ion exchanged samples are subject of careful 

thermal treatment dehydration and dehydroxylation occur and highly dispersed V2O5 particles 

are formed, which keep the layers apart like pillars. 

 As a first step of making vanadia-pillared montmorillonite (VOx-MT) 10 g of 

montmorillonite K-10 (Aldrich) was suspended in 1000 cm
3
 distilled water at 50 °C by 

intense stirring of the mixture for 4 h. Then, 500 cm
3
 solution, having a vanadyl sulfate 

(Sigma-Aldrich, 97 % purity) concentration of 0.02 mol/dm
3
, was added to the stirred 

suspension dropwise. The amount of added VOSO4 (10 mmol) was near to equivalent with 

the ion exchange capacity(IEC) of the used MT (12 mmol/10 g). After additional 16-hour 

stirring at 50 °C the suspension was filtered, the obtained solid was washed with distilled 

water, and dried in air at 120 °C overnight. The dried material was calcined at 400 °C for 4 h. 

The chemical analysis of the sample showed that 37 % of the vanadium moved from the 

exchange solution into the MT structure. This amount corresponds to about 30 % of the IEC 

of the MT. 

 The laponite (LT) is synthetic structural analogue of hectorite. The LT sample (XLG, 

Rockwood Ltd.) was pillared twice: first with titania (TiO2-LT) and then with vanadia 

(VOx-TiO2-LT) as described by Long et al. [14]. The Ti was introduced from an aqueous 

solution, containing TiCl4 and HCl in concentrations of 0.94 and 0.66 mol/dm
3
, respectively. 

Ten grams of LT was suspended in 1000  cm
3
 water and slowly 110 cm

3
 of the solution was 

added to it in drops. The amount of added TiCl4 (104 mmol) was about ten times as much as 

the ion exchange capacity of the used laponite (10 mmol/10 g). The particles separated from 

the liquid phase were dried at 120 
o
C overnight. The dried sample was calcined at 400 

o
C for 

4 h. The chemical analysis showed that close 90 % of the added Ti (90 mmol) remained in the 

solid in the form of titania. 

 The procedure, the treatments and the conditions of vanadia introduction in the TiO2-LT 

were similar to that described above for the MT sample. The amount of vanadium, moved 

from the VOSO4 solution into the TiO2-LT structure was about 37 % of the total IEC of the LP 

sample. 

 The LDHs, known also as hydrotalcites, consist of brucite [Mg(OH)2]-like layers wherein 

a fraction of the divalent magnesium cations is substituted by trivalent ions. As a result, the 

layers get positive charge, which is balanced by hydrated anions in the interlayer space. The 
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interlamellar ions can be exchanged by decavanadate, V10O28
6-

, anions. Thermal treatment of 

the ion-exchanged material must be applied to obtain the vanadia pillared hydrotalcite. 

 A VOx-LDH sample was prepared following the receipt described by Wegrzyn et al.[15]. 

First LDH was made by mixing a Mg
2+

/Al
3+

 solution (2 to 1 Mg/Al molar ratio) and a 

solution containing CO3
2-

 ions at 60 °C. Namely, 0.2 mol magnesium nitrate hexahydrate (99 

% purity, Sigma-Aldrich) and 0.1 mol aluminium nitrate nonahydrate (98+% purity, Sigma-

Aldrich) was dissolved in 200 cm
3
 water and added in drops to 60 mmol sodium carbonate, 

dissolved in 100 cm
3
 water. During addition of the nitrate solution the pH of the obtained 

slurry was kept at 10±0.2 by gradual addition of 3.2 M NaOH solution. After having full 

amounts of the solutions combined the slurry was stirred at 60 °C for 1 h. The interlayer 

carbonate anions were exchanged then by decavanadate (V10O28
6-

) solution. The solution was 

made by dissolving 12.193 g NaVO3 (Aldrich, 99.9%) in 360 ml water at pH= 4.5. The pH 

was adjusted using 1 M HNO3 solution. The ion-exchange was carried out at pH=4.5±0.1 and 

was accomplished in 5 min. Afterwards the suspension was filtered, washed by distilled water, 

dried at 110
o
C overnight and calcined then at 300 °C for 4 hours to get VOx-LDH sample. The 

negative charge of the used decavanadate was near to equivalent with half of the ion-exchange 

capacity of the used LDH sample. The chemical analysis of the calcined sample showed that 

virtually the total vanadium content of the exchange solution became incorporated into the 

LDH structure. 

 Using Pd(NH3)4(NO3)2 (Strem Chemicals Inc.) a solution was made containing 5 wt % Pd. 

Catalysts of about 0.6-0.8 wt% Pd content were obtained by impregnating the above described 

supported vanadia preparations with the solution and calcining them at 300 °C (VOx-LDH) or 

400 °C(VOx-MT and VOx-TiO2-LT) for 4 hours. The catalysts were designated as Pd/VOx-

MT, Pd/VOx-TiO2-LT, and Pd/VOx-LDH.  

 

2.2 Characterization 

 A Philips PW 1810/3710 X-ray diffractometer, applying monochromatized CuKα radiation 

(40 kV, 35 mA) was used. The XRD patterns of the samples (Fig. 1) were recorded at ambient 

conditions collecting data between 3° and 65° 2Θ degrees in 0.02° steps for 0.5 s at each step. 

 Nitrogen physisorption measurements were carried out at -195 °C using Quantachrome 

NOVA Automated Gas Sorption Instrument. Prior to measurements the samples were 

outgassed at 150 °C for 8 h. The specific surface area (SSA) values were calculated by the 

BET method from seven measured points of the N2 adsorption isotherm recorded in the 

relative pressure interval from 0.05 to 0.35 at -195 
o
C (Table 1. 
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. 

 The morphology of the preparations (Fig. 2) was examined by Morgagni 268D 

Transmission Electron Microscope (100 kV, W filament, point resolution = 0.5 nm) 

 The palladium and vanadium content of samples (Table 1) was determined by means of 

ICP-OES sequential plasma emission spectrometer with radial plasma viewing (Thermo 

Jarrell Ash, AtomScan 25 type). 

 Temperature-programmed reduction measurements were carried out by hydrogen (H2-

TPR) using a flow-through microreactor (I.D. 4 mm) made of quartz. About 100 mg of 

catalyst sample (particle size: 0.25–0.5 mm) was placed into the microreactor and was 

pre-treated in a 30 cm
3
/min flow of O2 at 350 °C for 1 h before the measurement. The 

pre-treated sample was cooled to room temperature in the O2 flow, flushed by N2 at room 

temperature for 30 min then was contacted with a 30 cm
3
/min flow of 10% H2/N2 mixture. 

The reactor temperature was ramped up at a rate of 10 °C/min to 600 °C and held at this 

temperature for 1h, while the effluent gas was passed through a liquid nitrogen trap and a 

thermal conductivity detector (TCD). Data were collected and processed by computer. 

Calculation of the corresponding hydrogen consumptions based on the peak areas was carried 

out by using the calibration value determined with the H2-TPR of CuO reference material. 

The reducibility of the catalysts was characterized by the molar hydrogen consumption of the 

PdO and the VOx phases. The VOx reducibility of the VOx-MT and VOx-TiO2-LT samples 

were obtained by correcting the total hydrogen consumption of the samples with the hydrogen 

consumption of the MT and TiO2-LT support, respectively, determined in separate TPR 

experiments. Similar correction was applied to obtain the extent of palladium reduction in the 

Pd/MT and Pd/TiO2-LT samples. In order to obtain the extent of VOx reduction in the 

Pd/VOx-MT and Pd/VOx-TiO2-LT catalysts the H2 consumptions obtained for the Pd/MT and 

Pd/TiO2-LT samples was taken in correction (Fig. 3 and Table 2). 

 A tapered element oscillating microbalance (TEOM 1500 Pulse Mass Analyzer from 

Rupprecht  Patashnick Co.) was used to determine the CO chemisorption of the pre-reduced 

Pd-containing catalysts. About 100 mg of catalyst sample was reduced in flowing H2 at 

300 °C (Pd/VOx-LDH) or 400 °C (Pd/VOx-TiO2-LT; Pd/VOx-MT), flushed by He at the 

reduction temperature for 60 min then cooled to 40°C. After having a stabilized weight 

monitored for about for 3 h, the sample was contacted with a flow of 3% CO/He for 60 min at 

40°C followed by a repeated flushing with He for 60 min at the same temperature. The 

chemisorbed amount of CO was determined as difference of the weights recorded in He flow 

before after contacting the catalyst with CO. 
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 UV-vis spectra of the preparations were collected by Thermo Scientific Evolution 300 

UV-VIS spectrophotometer equipped with Praying Mantis Diffuse Reflectance Accessory and 

High Temperature and Pressure Reaction Chamber, allowing in situ measurements of 

powdered solids (in situ DR-UV-vis). The reference materials (NaVO3, 99.9%, Na3VO4 

99.98%, Sigma-Aldrich products) and all the studied preparations were finely ground and 

diluted with BaSO4 (Alfa Aesar, Puratronic 99,998%). The DR-UV-vis spectra were measured 

against BaSO4 as background. The dilution was applied to get Kubelka-Munk function F(R∞) 

< 1. In order to obtain spectra of dehydrated samples both the background and absorbance 

data were collected at 350 °C after in-situ calcination at 350 °C in flowing oxygen for 30 min. 

The edge energy (Eg) for allowed transitions were obtained as the intercept of the straight line 

fitted to the low-energy rise of the [F(R∞) х hν]
2
 vs. hν plot (Fig. 4) as described in refs. 

[16,17]. 

 

2.3 Catalytic activity measurements 

 The catalyst preparations were characterized by their activity and selectivity in the Wacker 

oxidation of ethylene (Fig 5). In the reaction 500 mg of catalyst sample (particle size 0.85-

1.70 mm) was used at atmospheric pressure in a fixed-bed continuous flow glass tube reactor, 

having an internal diameter of 4 mm. The catalyst was activated in situ in the reactor in 

oxygen flow (20 cm
3
/min) at 350°C for 1 h then contacted with a gas flow of 3% C2H4/12% 

O2/24% H2O/He at a total flow rate of 30 cm
3
/min. The reactor effluent was analyzed by an 

on-line Shimadzu GC-2010 gas chromatograph equipped with automatic gas sampling valve 

and 30-m long HP-PLOT-U column. On each temperature the reaction was followed for 5 

hours. Flame-ionization detector (FID) was used to detect the main organic compounds, such 

as C2H4, AcH, AcOH, and the minor organic by-products, if any, whereas thermal 

conductivity detector (TCD) was applied to get signal from O2, CO2 and water. Between the 

reactor outlet and the GC the temperature of the gas line and the sampling valve was 

maintained at 120 °C in order to avoid the condensation of water and reaction products. The 

GC was calibrated for each reactant and product separately. The conversion of ethylene was 

calculated from the ethylene concentrations of the feed and the reactor effluent. The 

selectivities were calculated on the basis of the carbon content of the products. For instance, 

the acetaldehyde selectivity (S) was obtained as SAcH=2cAcH/(2cAcH + 2cAcOH + cCO2). 

 

3 Results and discussion 
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 The XRD patterns of the layered materials and their pillared derivatives are shown in 

Fig. 1.  

 The LDH has a hexagonal type unit cell. The XRD reflections were indexed using the 

ICDD card N
o
 35-0965. The lattice parameters c and a were calculated from the position of 

the 003 and 110 reflections, respectively. For the parent LDH sample c=2.28 nm  and a= 3.04 

nm was obtained. After incorporation of vanadia species the 003, 006, and 009 reflections 

shifted to lower 2Θ values. Thus, the intercalation of decavanadate anions in the LDH brought 

about an increase in the interlayer distance from 0.76 to 0.98 nm. The position of 110 

reflection did not change, indicating that the average cation-cation distance in the pillared 

octahedral, brucite-like sheets remained unaffected. The broad and weak reflections of the 

modified LDH sample indicate lattice disorder (Fig. 1A). Crystalline vanadia could not be 

detected despite of the relatively high vanadia content of the sample, suggesting high vanadia 

dispersion. Weak XRD lines belonging to hydrotalcite are also present after heat treatment at 

300 °C (VOx-LDH(a)). As Labajos et al. [18] demonstrated that distorted LDH structure is 

present after heat treatment at 275 °C, whereas appearance of MgO and Mg-Al-spinel 

structures were indicated only after treatment at 500 °C and above. The structural damage of 

our LDH sample is more pronounced, probably due to the affect of the acidic medium applied 

for ion exchange by V10O56
6-

 ions. Heat treatment increased structural disorder but the LDH 

lines of the heat treated sample are still detectable (Fig. 1, see VOx-LDH(a)).  

 In accordance with the finding of Long et al. [14] the introduction of vanadia in between 

the layers of the MT sample did not alter its XRD pattern (Fig. 1B). No vanadia reflections 

could be discerned. These findings may infer that calcination could not convert significant 

amount of the VO
+
 cations to VOx species, alternatively, the VOx, if formed, is present on the 

outer surface of the MT sample in highly dispersed form. 

 The strong acidic medium applied in the process of the titania-pillaring delaminated the 

LT sample as suggested by the much weaker LT reflections of the TiO2-LT sample than those 

of the original LT sample (Fig. 1C). The weakening of the reflections is stronger than that 

explained by the presence of 39 wt % titania beside the LT phase. The weak XRD peaks of LT 

are accompanied by strong anatase reflections (ICDD Card No. 21-1272). 

 The SSA of the vanadia-containing sample was regularly smaller than the SSA of the 

corresponding support material having layered structure (Table 1). In contrast, the titania-

pillared LT sample had a higher SSA than the LT phase alone. This finding suggests that 

delamination of the laponite phase occurred during the pillaring procedure. However, the 
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conversion of the TiO2-LT to VOx-TiO2-LT by VO
2+ 

cation exchange and subsequent 

calcination reduced the surface area as it happened with the other samples (Table 1).  

 No reflections of PdO or Pd
0
 were found on the XRD patterns of the calcined catalysts, 

i. e., the XRD patterns of the VOx and Pd/VOx preparations were the same. The TEM images 

of the catalysts are shown in Fig. 2. The pillaring process and the palladium introduction did 

not significantly alter the morphology of the parent layered materials (not shown). 

Appearance of palladium metal particles was not expected and particles were not discerned 

since catalysts were not pre-reduced before the TEM examination. 

 According to present knowledge [19] the oxidation of the alkene proceeds with co-

operation of V2O5, PdO and H2O. In latter reaction AcH, AcOH, CO2 products, Pd
0
 and, most 

probably, V
4+

 is obtained. The alkene oxidation is accomplished in an oxygen transfer chain. 

The catalytic cycle proceeds if O2 gas re-oxidizes the vanadium co-catalyst. The rate of any 

oxygen transfer step can determine the rate of oxidation reaction. If the oxidation/reduction 

rate of the vanadia was slow it could limit the rate of the Wacker oxidation reaction. The 

reducibility of supported VOx and Pd/VOx samples by hydrogen was used to characterize the 

oxygen/electron donor ability of the vanadia phase. Fig. 3 shows H2-TPR profiles. The H2 

consumptions, calculated by integration of the H2-TPR peaks, are given Table 2. The 

hydrogen consumption of the MT support (253 µmol/g) is much higher than that of the TiO2-

LT support (89 µmol/g). Unlike the LT, the MT, being of natural origin, contains reducible 

transition metal ions in an amount close to 2 wt %. The main component is iron (1.86 wt %). 

The palladium in the catalyst preparation increased the complexity of the reduction pattern. 

The reduction of palladium occurs at relatively low temperature (<~100 
o
C) where the 

generated Pd
0
 particles adsorb hydrogen that is released at a somewhat higher but still at 

relatively low temperature (Fig. 3). Discern the small negative peaks on the TPR curves of the 

Pd-containing MT preparations below about 100 
0
C, indicating H2 desorption from the 

palladium that must have been reduced in contact with hydrogen before the programmed 

temperature raise was started (Fig. 3B). The reduction of palladium over the LT containing 

preparations are somewhat hindered giving a sharp peak at about 100 
o
C. The reduced 

palladium can activate H2 for the reduction of other reducible components shifting their 

reduction peaks to lower temperatures. This effect is more pronounced on the Pd/MT sample 

containing a significant amount of reducible transition metal than on the Pd/TiO2-LT sample, 

containing only hard-to-reduce components like anatase and the pure synthetic smectite LT. 

The difference of the H2 consumption of the Pd/MT and MT preparations was calculated. 

Because the palladium enhances reducibility (and became reduced before the experiment was 
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started) the difference in the H2 consumption of the two materials probably reflects the affect 

of palladium on the reduction of metals in the MT support (Table 2). Similarly, the difference 

of the H2 consumption of the Pd/ TiO2-LT and TiO2-LT preparations was also determined. 

Considering the low reducibility of the TiO2-LT support, the difference allows the estimation 

of the H2/Pd value. A value of 0.47 was obtained in line with expectations. The TPR results 

suggest that vanadia is most difficult to reduce in the LDH preparations, although the 

presence of palladium promotes its reducibility. 

 It is well documented that vanadia catalysts are active in oxidative dehydrogenation 

reactions at about 450 °C where vanadia can participate in redox processes [20]. The H2-TPR 

results of the present work suggests that significant reduction of our supported VOx catalysts 

could be attained above 400 °C. The reduction behavior of VOx-MT and VOx-TiO2-LT 

samples was similar although the temperature, whereon the reduction was started, and the 

temperature of maximum reduction rate were somewhat lower for the latter sample (513 vs. 

563 °C). In order to estimate the average oxidation state of the vanadium after the H2-TPR 

experiment the reducibility of the support was taken in correction assuming that the H2 

consumption of the support was the same before and after vanadia introduction. Chemical 

analysis of the samples showed that the VO
+
 ion exchange removed about 20 % of the iron 

that was present in the native MT support. As a consequence the H2 consumption of the VOx-

MT sample was a bit over corrected, which led to a lower H2/V ratio (H2/V=0.62) than was 

the real value (Table 2). Because the support of the VOx/TiO2-LT sample hardly contains ions 

which were both exchangeable and reducible the correction for the H2 uptake of the support is 

fairly applicable. The H2/V values suggest that the formal average oxidation state of vanadium 

must be over both supports between V
3+

 and V
4+

 at the end of the H2-TPR experiment (Table 

2).  

  The DR UV-vis method is able to distinguish ortho and metavanadate compounds. The 

bulk orthovanadate (Na3VO4) and metavanadate (NaVO3) compounds contain isolated VO4 

units and polymeric VO4 chains, respectively [17]. The edge energy (Eg) of pure NaVO3 

sample was found to be 2.98 eV while that of Na3VO4 to 3.40 eV (Fig. 4). The intermediate 

Eg values of NaVO3/Na3VO4 mechanical mixtures showed linear dependence on the molar 

ratio. That means that after generating an Eg vs. molar ratio calibration line the percentage of 

isolated and polymeric vanadia forms of the vanadia-containing catalysts can be obtained by 

determining the Eg edge energy. 

 Fig. 4 shows that the VOx-LDH sample contains virtually the same vanadia species as 

Na3VO4, i.e., isolated VO4 units (Eg = 3.38 eV). In contrast, the Eg values obtained for the 
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VOx-MT and VOx-TiO2-LT samples were 3.22 and 3.16 eV, respectively, suggesting that these 

preparations contain mixtures of isolated VO4 units and polymeric VO4 chains. The redox 

properties of the vanadia component of the catalyst must have importance regarding the 

Wacker oxidation activity of the catalyst. The reducibility of vanadium atoms was found to 

depend on the polymerization level of vanadia [21]. The polymerized forms were shown to 

become more easily reduced than the isolated surface vanadia species. We can conclude that 

about 40 and 60 % of vanadia are present in polymeric form in the VOx-MT and VOx-TiO2-LT 

samples, respectively. The H2-TPR showed that the MT and TiO2-LT supported VOx shows 

similar reducibility suggesting that the supports are of similar character or, regarding 

reducibility, the interaction between the support and the polymeric vanadia species is of 

secondary importance. 

 As expected, the palladium was found to have pronounced effect on the reducibility of the 

VOx in the supported Pd/VOx catalysts. The H2-TPR pattern of the Pd/VOx-TiO2-LT catalyst 

shows one sharp peak at 84 °C and a broad peak between 180 and 600 °C. In contrast, the H2-

TPR pattern of the Pd/VOx-MT catalyst exhibits peaks at 94, 124 and 225 °C sitting on the 

top of a broad peak overarching the whole temperature range of the measurement. In order to 

get the reduction degree of vanadium the hydrogen consumption of the corresponding Pd-

containing support was taken into correction. The average oxidation state of vanadium was 

between V
2+

 and V
3+

 in the Pd/VOx-MT catalyst whereas it was between V
3+

 and V
4+

 in the 

Pd/VOx-TiO2-LT catalyst. These results suggest that in presence of Pd the vanadia is more 

easily and deeply reducible on the MT than on the TiO2-LT support. 

 The results of catalytic test reactions are shown on Fig. 5. The main products, as expected, 

are AcH, AcOH and CO2. Formation of methane and acetone was also detected with 

selectivities lower than about 1 %. Traces of propylene, acrolein and propionaldehyde were 

also discerned. It generally applies for all catalyst that, when the reaction temperature and 

conversion level is increased, the selectivity of AcH decreases, whereas the AcOH selectivity 

increases and the formation of CO2 rapidly grows. The H2-TPR curves show that the 

supported Pd/VOx catalysts become partially reduced already at the low temperatures 

(< 200 
o
C) where the Wacker oxidation proceeds (Table 2). However, the oxidation state of 

the catalysts is significantly different. In the case of the MT supported catalyst the H2 

consumption can be associated with the reduction of V
5+ 

(the PdO must have been reduced at 

lower temperature, out of the range of the measurement), whereas in the case of the TiO2-LT 

supported catalyst virtually all the H2 consumption comes from the reduction of the PdO 

component. 
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 The reduction of the catalysts generates palladium particles on the support. The estimation 

of the average Pd particle size is generally determined by XRD using the Scherrer method or 

calculated from the dispersion, determined by H2 or CO chemisorptions measurement [22,23]. 

In the present study the CO chemisorptions method was used to obtain the dispersion of 

palladium particles over the catalysts reduced by H2 at 300 
o
C (Pd/VOx-LDH) or 400 

o
C 

(Pd/VOx-MT, Pd/VOx-TiO2-LT). It was assumed that the number of adsorbed CO molecules 

equals with the number of surface Pd atoms [22]. To calculate the particle diameter we used 

the 7.9 10
-2

 nm
2
 value for the atomic surface area Pd and spherical particle model [22,23]. 

The obtained results are given in Table 1. Obviously support MT hinders less the aggregation 

of the reduced Pd atoms.  

The Wacker oxidation proceeds in the presence of a reducing agent, the reactant ethylene, and 

the oxidizing agent O2 that is in excess to the amount needed for the stoichiometric total 

oxidation of ethylene. The O2 participates in a selective Wacker oxidation of ethylene to AcH 

and AcOH and in a non selective catalytic oxidation of the reactant and the organic products 

to CO2. The average valence state of the working catalyst is determined by the relative rates 

of these reactions that in turn strongly depend on the temperature. The H2-TPD results suggest 

that the oxide ions of the MT supported Pd/VOx catalyst are more readily participate in redox 

processes that those of the TiO2-LT catalyst. That may have relation to the catalytic activity 

and selectivity in the Wacker oxidation of ethylene. The ethylene conversion and the 

oxidation to CO2 more rapidly increases with the increasing reaction temperature over the 

Pd/VOx-TiO2-LT catalyst than over Pd/VOx-MT suggesting that the activation of the O2 gas 

over the catalyst, having less mobile oxide ions, has a higher activation energy. As a 

consequence, the AcH selectivity rapidly drops as temperature is increased. Because of the 

opposite temperature dependence of conversion and AcH selectivity the AcH yield can be 

maximized by selecting the optimum reaction temperature. 

 The preparations, containing vanadia and no palladium, were not active in the oxidation of 

ethylene in the applied temperature range at all. When vanadium was absent the palladium on 

the support generated only carbon dioxide. These results prove that the Wacker mechanism, 

requiring both palladium and oxygen transfer co-catalyst, is effective in the partial oxidation 

of ethylene. The water is also important component of the process, however, if any oxidation 

proceeds water is formed. A minor amount of water in the reacting system could bring about 

the appearance of the Wacker products in minor amounts. 

 In spite of its highest vanadia content the lowest activity and AcH selectivity were 

obtained with the Pd/VOx-LDH catalyst. The XRD results (Fig. 1A and Fig. 2) showed that 
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the original LDH structure was lost during vanadia introduction. The LDH framework is 

stable at pH>10, but the intercalation of V10O56
6-

 had to be carried at pH=4.5. Both the low 

pH and the dehydroxylation during calcination could result in the degradation of LDH layers. 

The eventual fractional occlusion of vanadia could hinder its intimate contact with palladium 

particles. Nevertheless, the appearance of AcH product showed a low Wacker-type selective 

oxidation activity of the catalyst. A further probable reason of the low activity is that this 

catalyst contains mainly isolated vanadia species of lower oxygen mobility than that attributed 

to the oxygen atoms of polymeric vanadia. The vanadia must act as electron transmitter. The 

electrons over polymeric vanadia chains are much more delocalized so this vanadia form can 

more easily transmit oxygen atoms from oxygen molecule than isolated vanadia species. 

 Since the iron and vanadium content of montmorilloite samples is in the same range, the 

Pd/MT (without vanadium) was also checked in separate catalytic test reaction. This 

composition proved to be inactive in Wacker oxidation of ethylene, although Fe
3+

/Fe
2+

 could 

serve as co-catalyst to Pd
0
/Pd

2+
, only formation of CO2 was observed. 

 Preliminary studies showed that nanosized anatase particles are favorable support for the 

vanadia/palladium redox ensembles for getting active Wacker catalyst. This infers that the 

enhanced catalytic activity of Pd/VOx-TiO2-LT is probably associated with presence of TiO2 

nanoparticles. Further studies are needed to clarify the possible role of titania in the 

heterogeneous Wacker type selective oxidation catalysts. 

 

4. Conclusions 

 It was attempted to introduce VOx species as pillars between the layers of LDH and 

smectites. The vanadia-modified materials were used as support for palladium. The selective 

catalytic partial ethylene oxidation was shown to follow the Wacker mechanism over all 

samples. The catalysts containing polymericVO4 species were more active than the one 

containin monomeric VO4. The vanadia acts as electron transmitter. The electrons over 

polymeric vanadia chains are much more delocalized so this vanadia form can more easily 

transmit oxygen atoms from oxygen molecule than isolated vanadia species. The redox 

properties of the vanadia component were shown to be affected by the support-vanadia 

interaction and was significantly modified by the presence of palladium.  
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Table1. Characterization of the supports and catalysts. 

Sample ID
a 

SSA, m
2
/g V2O5 (TiO2), wt% Pd, wt%

b
 D, %

c 
dPd

d
, nm 

VOx-LDH (LDH) 108 (151) 40.0 0.59 31 4 

VOx-MT (MT) 210 (238) 3.35 0.69 9 13 

TiO2-LT (LT) 452 (320) -    

VOx-TiO2-LT 365 3.35 (39.2) 0.85 29 4 

a
 LDH=Layered Double Hydroxide, MT=K-10 montmorillonite, LT=Laponite.  

b
The amount of Pd introduced in the vanadia-pillared sample. The SSA of each Pd catalyst was about the same as 

that of its support.  
c
 Pd-dispersity of the reduced catalyst. Calculated from CO chemsorption capacity. The number of the surface Pd 

atoms was taken as equal with the number of adsorbed CO molecules.  
d
 The diameter of Pd particles was calculated with an area of 0.079 nm

2
/Pd atom 

 

 

Table2. Results derived from the H-TPR measurements of Fig. 3. 

Sample ID H2 (µmol/gcat)  H2/V (H2/Pd) 

MT 253 - 

Pd/MT 309 0.81
a
 

VOx-MT 484 >0.62 

Pd/ VOx-MT  781 (253
b
 + 528

c
) 1.28 

TiO2-LT 89 - 

Pd/TiO2-LT 129 (45
b
+84

c
) (0.47)

 

VOx-TiO2-LT 384 0.80 

Pd/VOx-TiO2-LT 429 (139
b
+290

c
) 0.81 

Pd/LDH 97 - 

VOx-LDH 2046 0.83 

Pd/VOx-LDH 2275 0.92 

a 
The difference of the H2 consumption of Pd/MT and MT 

devided by the molar vanadium content. The number showes the 

Pd-induced reducibility increase of the MT support. 
b
 H2 uptake  up to 200 

o
C. 

c
 H2 uptake  from 200 

o
C up. 
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Fig. 1. XRD patterns of layered and pillared layered materials recorded at room temperature. 

Section A shows the diffractogram of the LDH and VOx-LDH sample after drying at 110°C 

overnight and the diffractogram of the VOx-LDH(a) sample, obtained from the VOx-LDH 

sample by heating it in air at 300 
o
C for 4 h. The diffractograms in sections B and C were 

recorded for samples activated in air at 400
 o
C for 3 h. 
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Fig. 2. TEM images of a) Pd/VOx-LDH, b) Pd/VOx-MT, c) Pd/VOx-TiO2-LT. The LDH and 

the other catalysts were pre-calcined in air at 300
o
C and 400 

o
C, respectively. 
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Fig. 3. H2-TPR profiles of catalyst precursors and catalyst samples  
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Fig. 4. UV-vis DR spectra and Eg values of reference (insert) and catalyst materials. Both the 

background and absorbance data were collected at 350 °C after in-situ calcination at 350 °C in 

flowing oxygen for 30 min.  
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Fig. 5. Catalytic conversion of 3% ethylene/12% oxygen/24% water/He gas mixture as a 

function of temperature over different catalysts The measurements were carried out at 

atmospheric pressure, GHSV= 3600 h
-1

 , conversions and selectivities were calculated from 

the ethylene consumption and on the basis of the carbon content of the products.  
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