109 research outputs found

    Phenotypic and Genetic Consequences of Size Selection at the Larval Stage in the Pacific Oyster (Crassostrea gigas)

    Get PDF
    The life histories of oysters in the genus "Crassostrea", like those of most marine bivalves, are typified by high fecundity and low survival in nature. Rearing conditions in hatcheries however ensure optimized density, diet, and temperature. Hatcheries are becoming increasingly important for the production of juveniles in aquaculture, and their culture practices often include culling of slow growing larvae to reduce and synchronize the time taken to reach settlement. Because previous studies have found substantial genetic variation for early life developmental traits in "Crassostrea gigas", these culling practices are likely to cause highly different selective pressures in hatcheries from those in the natural environment. We studied the phenotypic and genetic impact of such culling practices in a factorial cross between 10 males and 3 females subjected to progressive culling of the smallest 50% of larvae, compared with a non-culled control. Measurements were made on larval growth, survival, time taken to attain pediveliger stage and settlement success. Culling had a larger effect on the variance of these larval traits than on their means. The larvae in culled cultures were approximately 10% larger than those in controls, whereas the coefficient of variation was reduced by 30 -40%. Culling also reduced the mean time to settlement by 12% and its variance by 55%. Using a multiplexed set of microsatellite markers to trace parentage, we also estimated the variance in reproductive success in a controlled experiment to quantify the consequences of intensive hatchery rearing practices. We also focused on changes in effective population size and genetic structure over time (and developmental stages). Our results show a loss of genetic diversity following removal of the smallest larvae by culling, as well as temporally varying genetic structure of the larval population. This supports the existence of genetic variability in early life developmental traits in C. gigas. Culling in hatcheries, like size-related selective pressures in the wild, are likely to have a significant genetic impact, through their effects on the timing of settlement

    Summer Mortality of Hatchery-produced Pacific Oyster Spat (Crassostrea gigas). I. Estimation of Genetic Parameters for Survival and Growth

    Get PDF
    The multidisciplinary project "MOOREST" aims to improve our understanding of causes of summer mortality in "Crassostrea gigas" juveniles in France and to reduce its its impact on oyster production. As part of the MOREST project, 43 full-sib families nested within 17 half-sib families were produced, planted out and tested in 3 sites during summer 2001 to assess to what extent genetic variability exists for this trait. A strong genetic basis was found for survival as narrow-sense heritability estimates ranged from 0.47 to 1.08, with higher values in sites where summer mortality was higher. Genetic correlations across sites were positive and very high for survival, indicating no genotype by environment interaction. In contrast, lower genetic variation was observed for growth in all sites. Finally, genetic correlations between growth and survival were low, in all sites. Selective breeding in a single site should therefore be an efficient means of improving survival in oysters less than one year old along the French Atlantic and Channel coastlines with only very limited effects on growth. As yield mostly depends on survival and growth, this approach should significantly improve harvestable yield. Possible reasons why a high genetic variance for survival appears to be maintained in wild populations are discussed

    Maturation Trends Suggestive of Rapid Evolution Preceded the Collapse of Northern Cod

    Get PDF
    Northern cod, comprising populations of Atlantic cod (Gadus morhua) off southern Labrador and eastern Newfoundland, supported major fisheries for hundreds of years. But in the late 1980s and early 1990s, northern cod underwent one of the worst collapses in the history of fisheries. The Canadian government closed the directed fishing for northern cod in July 1992, but even after a decade-long offshore moratorium, population sizes remain historically low. Here we show that, up until the moratorium, the life history of northern cod continually shifted towards maturation at earlier ages and smaller sizes. Because confounding effects of mortality changes and growth-mediated phenotypic plasticity are accounted for in our analyses, this finding strongly suggests fisheries-induced evolution of maturation patterns in the direction predicted by theory. We propose that fisheries managers could use the method described here as a tool to provide warning signals about changes in life history before more overt evidence of population decline becomes manifest

    2007 Report of the ICES Study Group on Fisheries-Induced Adaptive Change (SGFIAC)

    Get PDF
    There is a growing body of scientific evidence indicating that fisheries can cause evolutionary responses over time periods as short as 1020 years, in particular in traits such as the onset of maturation. As these changes will most likely result in a reduction of the productivity of a fish stock, management objectives and (precautionary) reference points for sustainable exploitation need to be re-defined, and new objectives and reference points for managing fisheries-induced evolution need to be developed. Current knowledge allows for two generalisations. First, reducing harvest rates will almost always slow the rate and extent of fisheries-induced evolution in most life-history traits. Second, raising a stock's minimum size limit for exploitation well above the size range over which maturation occurs will slow down the rate of evolution in its maturation schedule. To go beyond these generic insights, "Evolutionary Impact Assessments" (EvoIAs) are proposed to quantify the effects of management measures, through the evolutionary response of specific stocks, on the utility functions defined by managers. The Study Group on Fisheries Induced Adaptive Change [SGFIAC] proposes to further develop this framework in dialogue with fisheries scientists and managers, with the aim of integrating the effects of fisheries-induced evolution into fisheries management advice. Developing EvoIAs in the context of suitable case studies is considered to be the most efficient way for making progress

    Complementarity and Discriminatory Power of Genotype and Otolith Shape in Describing the Fine-Scale Population Structure of an Exploited Fish, the Common Sole of the Eastern English Channel

    Get PDF
    Marine organisms show population structure at a relatively fine spatial scale, even in open habitats. The tools commonly used to assess subtle patterns of connectivity have diverse levels of resolution and can complement each other to inform on population structure. We assessed and compared the discriminatory power of genetic markers and otolith shape to reveal the population structure on evolutionary and ecological time scales of the common sole (Solea solea), living in the Eastern English Channel (EEC) stock off France and the UK. First, we genotyped fish with Single Nucleotide Polymorphisms to assess population structure at an evolutionary scale. Then, we tested for spatial segregation of the subunits using otolith shape as an integrative tracer of life history. Finally, a supervised machine learning framework was applied to genotypes and otolith phenotypes to probabilistically assign adults to subunits and assess the discriminatory power of each approach. Low but significant genetic differentiation was found among subunits. Moreover, otolith shape appeared to vary spatially, suggesting spatial population structure at fine spatial scale. However, results of the supervised discriminant analyses failed to discriminate among subunits, especially for otolith shape. We suggest that the degree of population segregation may not be strong enough to allow for robust fish assignments. Finally, this study revealed a weak yet existing metapopulation structure of common sole at the fine spatial scale of the EEC based on genotypes and otolith shape, with one subunit being more isolated. Our study argues for the use of complementary tracers to investigate marine population structure

    Evolutionary impact assessment: accounting for evolutionary consequences of fishing in an ecosystem approach to fisheries management

    Get PDF
    Managing fisheries resources to maintain healthy ecosystems is one of the main goals of the ecosystem approach to fisheries (EAF). while the number of international treaties call for the implementation of EAF, there are still gaps in the underlying methodology. One aspect that has received substantial scientific attention recently in fisheries-induced evolution (FIE). Increasing evidence indicates that intensive fishing has the potential to exert strong directional selection on life-history traits, behavior, physiology, and morphology of exploited fish. Of particular concern is that reversing evolutionary responses to fishing can be much more difficult than reversing demographic or phenotypically plastic responses. Furthermore, like climate change, multiple agents cause fisheries-induced evolution with effects accumulating over time. Consequently, FIE may alter then utility derived from fish stocks, which in turn can modify the monetary value living aquatic resources provide to society. Quantifying and predicting the evolutionary effects of fishing is therefore important for both ecological and economic reasons, An important reason this is not happening is the lack of an appropriate assessment framework. We therefor describe the evolutionary impact assessment (EvoIA) as a structured approach for assessing the evolutionary outcomes of alternative management options. EvoIA can contribute to the ecosystem approach to fisheries management by clarifying how evolution may alter stock properties and ecological relations, support the precautionary approach to fisheries management by addressing a previously overlooked source of uncertainty and risk, and thus contribute to sustainable fisheries

    Little evidence for a selective advantage of armour-reduced threespined stickleback individuals in an invertebrate predation experiment

    Get PDF
    The repeated colonization of freshwater habitats by the ancestrally marine threespined stickleback Gasterosteus aculeatus has been associated with many instances of parallel reduction in armour traits, most notably number of lateral plates. The change in predation regime from marine systems, dominated by gape-limited predators such as piscivorous fishes, to freshwater habitats where grappling invertebrate predators such as insect larvae can dominate the predation regime, has been hypothesized as a driving force. Here we experimentally test the hypothesis that stickleback with reduced armour possess a selective advantage in the face of predation by invertebrates, using a natural population of stickleback that is highly polymorphic for armour traits and a common invertebrate predator from the same location. Our results provide no compelling evidence for selection in this particular predator–prey interaction. We suggest that the postulated selective advantage of low armour in the face of invertebrate predation may not be universal
    corecore