333 research outputs found

    ESCRT-I Core and ESCRT-II GLUE Domain Structures Reveal Role for GLUE in Linking to ESCRT-I and Membranes

    Get PDF
    SummaryESCRT complexes form the main machinery driving protein sorting from endosomes to lysosomes. Currently, the picture regarding assembly of ESCRTs on endosomes is incomplete. The structure of the conserved heterotrimeric ESCRT-I core presented here shows a fan-like arrangement of three helical hairpins, each corresponding to a different subunit. Vps23/Tsg101 is the central hairpin sandwiched between the other subunits, explaining the critical role of its “steadiness box” in the stability of ESCRT-I. We show that yeast ESCRT-I links directly to ESCRT-II, through a tight interaction of Vps28 (ESCRT-I) with the yeast-specific zinc-finger insertion within the GLUE domain of Vps36 (ESCRT-II). The crystal structure of the GLUE domain missing this insertion reveals it is a split PH domain, with a noncanonical lipid binding pocket that binds PtdIns3P. The simultaneous and reinforcing interactions of ESCRT-II GLUE domain with membranes, ESCRT-I, and ubiquitin are critical for ubiquitinated cargo progression from early to late endosomes

    In vitro reactions of vacuole inheritance in Saccharomyces cerevisiae.

    Full text link

    Mapping Exoplanets

    Full text link
    The varied surfaces and atmospheres of planets make them interesting places to live, explore, and study from afar. Unfortunately, the great distance to exoplanets makes it impossible to resolve their disk with current or near-term technology. It is still possible, however, to deduce spatial inhomogeneities in exoplanets provided that different regions are visible at different times---this can be due to rotation, orbital motion, and occultations by a star, planet, or moon. Astronomers have so far constructed maps of thermal emission and albedo for short period giant planets. These maps constrain atmospheric dynamics and cloud patterns in exotic atmospheres. In the future, exo-cartography could yield surface maps of terrestrial planets, hinting at the geophysical and geochemical processes that shape them.Comment: Updated chapter for Handbook of Exoplanets, eds. Deeg & Belmonte. 17 pages, including 6 figures and 4 pages of reference

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Total antioxidant activity and trace elements in human milk: the first 4 months of breast-feeding

    Get PDF
    The content of many nutrients in breast milk are dependent on the nutritional status of the lactating woman. This is particularly true for fat and water-soluble vitamins, some of which have antioxidant properties. The aim of the study entertained herein was to evaluate the changes in total antioxidant status of human milk during the first 4 months of lactation, and to correlate such changes with the contents in specific antioxidant oligoelements (Cu, Zn, Mn and Se). Milk samples were collected from (31) lactating women recruited at the Service of Obstetrics of the Hospital de São João in Porto, after 1, 4, 8, 12 and 16 weeks after birth. The total antioxidant status (TAS) of human milk was measured by the Randox® commercial kit and trace metals by ICP-MS (inductively coupled plasma-mass spectrometry). The results found for TAS and oligoelements under study show a decrease in the concentration of these parameters from 7 days to 4 months of breast-feeding and significant correlations (p < 0.05) were found between TAS and Cu, Zn and Se (not Mn). The decreases of Cu, Zn and Se were also correlated, but not proportional between them, suggesting diverse excretion mechanisms for all. Between primipara and multipara women, a significant difference was found only for Cu and Zn concentrations at 7 days of lactation, but not for the other metals or TAS. With respect to the mother’s age, no correlation was found, either for trace metal concentrations or TAS
    corecore