468 research outputs found
Recommended from our members
3D printed ventricular septal defect patch: a primer for the 2015 Radiological Society of North America (RSNA) hands-on course in 3D printing.
Hand-held three dimensional models of the human anatomy and pathology, tailored-made protheses, and custom-designed implants can be derived from imaging modalities, most commonly Computed Tomography (CT). However, standard DICOM format images cannot be 3D printed; instead, additional image post-processing is required to transform the anatomy of interest into Standard Tessellation Language (STL) format is needed. This conversion, and the subsequent 3D printing of the STL file, requires a series of steps. Initial post-processing involves the segmentation-demarcation of the desired for 3D printing parts and creating of an initial STL file. Then, Computer Aided Design (CAD) software is used, particularly for wrapping, smoothing and trimming. Devices and implants that can also be 3D printed, can be designed using this software environment. The purpose of this article is to provide a tutorial on 3D Printing with the test case of complex congenital heart disease (CHD). While the infant was born with double outlet right ventricle (DORV), this hands-on guide to be featured at the 2015 annual meeting of the Radiological Society of North America Hands-on Course in 3D Printing focused on the additional finding of a ventricular septal defect (VSD). The process of segmenting the heart chambers and the great vessels will be followed by optimization of the model using CAD software. A virtual patch that accurately matches the patient's VSD will be designed and both models will be prepared for 3D printing
Modal Analysis and Coupling in Metal-Insulator-Metal Waveguides
This paper shows how to analyze plasmonic metal-insulator-metal waveguides
using the full modal structure of these guides. The analysis applies to all
frequencies, particularly including the near infrared and visible spectrum, and
to a wide range of sizes, including nanometallic structures. We use the
approach here specifically to analyze waveguide junctions. We show that the
full modal structure of the metal-insulator-metal (MIM) waveguides--which
consists of real and complex discrete eigenvalue spectra, as well as the
continuous spectrum--forms a complete basis set. We provide the derivation of
these modes using the techniques developed for Sturm-Liouville and generalized
eigenvalue equations. We demonstrate the need to include all parts of the
spectrum to have a complete set of basis vectors to describe scattering within
MIM waveguides with the mode-matching technique. We numerically compare the
mode-matching formulation with finite-difference frequency-domain analysis and
find very good agreement between the two for modal scattering at symmetric MIM
waveguide junctions. We touch upon the similarities between the underlying
mathematical structure of the MIM waveguide and the PT symmetric quantum
mechanical pseudo-Hermitian Hamiltonians. The rich set of modes that the MIM
waveguide supports forms a canonical example against which other more
complicated geometries can be compared. Our work here encompasses the microwave
results, but extends also to waveguides with real metals even at infrared and
optical frequencies.Comment: 17 pages, 13 figures, 2 tables, references expanded, typos fixed,
figures slightly modifie
Discrete-Lattice Model for Surface Bound States and Tunneling in d-Wave Superconductors
Surface bound states in a discrete-lattice model of a cuprate
superconductor are shown to be, in general, coherent superpositions of an
incoming excitation and more than one outgoing excitation, and a simple
graphical construction based on a surface Brillouin zone is developed to
describe their nature. In addition, a momentum-dependent lifetime contribution
to the width of these bound states as observed in tunneling experiments is
derived and elucidated in physical terms.Comment: 4 pages, 1 figure, revte
Realistic Surface Scattering and Surface Bound State Formation in the High T_c Superconductor YBa_2Cu_3O_{6+x}
Surface Umklapp scattering of quasiparticles, and surface roughness are shown
to play essential roles in the formation of the surface bound states in
realistic models for YBa_2Cu_3O_{6+x}. The results account for the shape, the
impurity dependence of the height, and for a proposed universal width of the
zero bias conductance peak.Comment: 4 pages, 1 figur
A dc voltage step-up transformer based on a bi-layer \nu=1 quantum Hall system
A bilayer electron system in a strong magnetic field at low temperatures,
with total Landau level filling factor nu =1, can enter a strongly coupled
phase, known as the (111) phase or the quantum Hall pseudospin-ferromagnet. In
this phase there is a large quantized Hall drag resistivity between the layers.
We consider here structures where regions of (111) phase are separated by
regions in which one of the layers is depleted by means of a gate, and various
of the regions are connected together by wired contacts. We note that with
suitable designs, one can create a DC step-up transformer where the output
voltage is larger than the input, and we show how to analyze the current flows
and voltages in such devices
Localized surface states in HTSC: Alternative mechanism of zero-bias conductance peaks
It is shown that the quasiparticle states localized in the vicinity of
surface imperfections of atomic size can be responsible for the zero-bias
tunneling conductance peaks in high-Tc superconductors. The contribution from
these states can be easily separated from other mechanisms using their
qualitatively different response on an external magnetic field.Comment: REVTeX, 4 pages, 2 figs; to be published in PR
Influence of impurity-scattering on tunneling conductance in d-wave superconductors with broken time reversal symmetry
Effects of impurity scattering on tunneling conductance in dirty
normal-metal/insulator/superconductor junctions are studied based on the Kubo
formula and the recursive Green function method. The zero-bias conductance peak
(ZBCP) is a consequence of the unconventional pairing symmetry in
superconductors. The impurity scattering in normal metals suppresses the
amplitude of the ZBCP. The degree of the suppression agrees well with results
of the quasiclassical Green function theory. When superconductors have
+is-wave pairing symmetry, the time-reversal symmetry is broken in
superconductors and the ZBCP splits into two peaks. The random impurity
scattering reduces the height of the two splitting peaks. The position of the
splitting peaks, however, almost remains unchanged even in the presence of the
strong impurity scattering. Thus the two splitting peaks never merge into a
single ZBCP.Comment: 12 pages, 5 figures, using jpsj2.cls and overcite.st
Prevalence and Characteristics of Campylobacter Species Isolated from Gallbladder of Slaughtered Sheep in Van (Eastern) Turkey
To determine the prevalence of campylobacter species in gallbladder of sheep in Van, (Eastern) Turkey, a total of 220 gallbladder samples from healthy slaughtered sheep were examined bacteriologically in October 2000 and 2002. Of the 110 samples examined each year, 27 (24.6%) and 24 (21.8%) campylobacter strains were isolated, respectively. Of the 27 campylobacter strains isolated in the year 2000, 14 (51.9%) were identified as C. jejuni, 7 (25.9%) C. fetus, 3 (11.1%) C. coli and 3 (11.1%) C. lari. Similar results were obtained in the study performed in 2002, but C. lari could not be isolated. Growth and biochemical characteristics of all identified Campylobacter species with some exceptions were typical of each species. Six of 13 examined C. fetus strains grew well at both 25 °C and 42 °C in thioglycollate medium and on blood agar. C. jejuni strains differed from C. coli only by Na-hippurate hydrolysis test. Results of the present study revealed that C. jejuni is the most common campylobacter species isolated from gallbladders of sheep. The thermophilic campylobacters in significant proportions may cause contamination of carcass during slaughter and transmission of the food-borne pathogens to humans
An environmental assessment of risk in achieving good environmental status to support regional prioritisation of management in Europe
The Marine Strategy Framework Directive (MSFD) aims to achieve Good Environmental Status (GES) in Europe's Seas. The requirement for regional sea authorities to identify and prioritise issues for management has meant that standardized methods to assess the current level of departure from GES are needed. The methodology presented here provides a means by which existing information describing the status of ecosystem components of a regional sea can be used to determine the effort required to achieve GES. A risk assessment framework was developed to score departure from GES for 10 out of the 11 GES descriptors, based on proposed definitions of 'good' status, and current knowledge of environmental status in each of the four regional seas (North-East Atlantic, Mediterranean Sea, Baltic Sea and Black Sea). This provides an approach for regional evaluation of environmental issues and national prioritisation of conservation objectives. Departure from GES definitions is described as 'high', 'moderate' or low' and the implications for management options and national policy decisions are discussed. While the criteria used in this study were developed specifically for application toward MSFD objectives, with modification the approach could be applied to evaluate other high-level social, economic or environmental objectives. Crown Copyright (C) 2012 Published by Elsevier Ltd. All rights reserved
Josephson effect in d-wave superconductor junctions in a lattice model
Josephson current between two d-wave superconductors is calculated by using a
lattice model. Here we consider two types of junctions, , the parallel
junction and the mirror-type junction. The maximum Josephson current
shows a wide variety of temperature () dependence depending on the
misorientation angles and the types of junctions. When the misorientation
angles are not zero, the Josephson current shows the low-temperature anomaly
because of a zero energy state (ZES) at the interfaces. In the case of
mirror-type junctions, has a non monotonic temperature dependence. These
results are consistent with the previous results based on the quasiclassical
theory. [Y. Tanaka and S. Kashiwaya: Phys. Rev. B \textbf{56} (1997) 892.] On
the other hand, we find that the ZES disappears in several junctions because of
the Freidel oscillations of the wave function, which is peculiar to the lattice
model. In such junctions, the temperature dependence of is close to the
Ambegaokar-Baratoff relation.Comment: 17 pages, 10 figures, using jpsj2.cls and oversite.st
- …
