51 research outputs found

    Deep Interactive Learning: An Efficient Labeling Approach for Deep Learning-Based Osteosarcoma Treatment Response Assessment

    Full text link
    Osteosarcoma is the most common malignant primary bone tumor. Standard treatment includes pre-operative chemotherapy followed by surgical resection. The response to treatment as measured by ratio of necrotic tumor area to overall tumor area is a known prognostic factor for overall survival. This assessment is currently done manually by pathologists by looking at glass slides under the microscope which may not be reproducible due to its subjective nature. Convolutional neural networks (CNNs) can be used for automated segmentation of viable and necrotic tumor on osteosarcoma whole slide images. One bottleneck for supervised learning is that large amounts of accurate annotations are required for training which is a time-consuming and expensive process. In this paper, we describe Deep Interactive Learning (DIaL) as an efficient labeling approach for training CNNs. After an initial labeling step is done, annotators only need to correct mislabeled regions from previous segmentation predictions to improve the CNN model until the satisfactory predictions are achieved. Our experiments show that our CNN model trained by only 7 hours of annotation using DIaL can successfully estimate ratios of necrosis within expected inter-observer variation rate for non-standardized manual surgical pathology task.Comment: Accepted at MICCAI 202

    Histopathological diagnosis of breast cancer using machine learning

    Get PDF
    Contains fulltext : 178907.pdf (publisher's version ) (Open Access)Promotor : Karssemeijer, N. Co-promotores : Litjens, G.J.S., Laak, J.A.W.M. van derRadboud University, 20 december 201

    Machine Learning Compared With Pathologist Assessment-Reply

    No full text
    Contains fulltext : 193623.pdf (Publisher’s version ) (Closed access

    A fully automatic unsupervised segmentation framework for the brain tissues in MR images

    No full text
    This paper presents a novel fully automatic unsupervised framework for the segmentation of brain tissues in magnetic resonance (MR) images. The framework is a combination of our proposed Bayesian-based adaptive mean shift (BAMS), a priori spatial tissue probability maps and fuzzy c-means. BAMS is applied to cluster the tissues in the joint spatialintensity feature space and then a fuzzy c-means algorithm is employed with initialization by a priori spatial tissue probability maps to assign the clusters into three tissue types; white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF). The proposed framework is validated on multimodal synthetic as well as on real T1-weighted MR data with varying noise characteristics and spatial intensity inhomogeneity. The performance of the proposed framework is evaluated relative to our previous method BAMS and other existing adaptive mean shift framework. Both of these are based on the mode pruning and voxel weighted k-means algorithm for classifying the clusters into WM, GM and CSF tissue. The experimental results demonstrate the robustness of the proposed framework to noise and spatial intensity inhomogeneity, and that it exhibits a higher degree of segmentation accuracy in segmenting both synthetic and real MR data compared to competing methods

    Automated segmentation of free-lying cell nuclei in Pap smears for malignancy-associated change analysis

    No full text
    This paper presents an automated algorithm for robustly detecting and segmenting free-lying cell nuclei in bright-field microscope images of Pap smears. This is an essential initial step in the development of an automated screening system for cervical cancer based on malignancy associated change (MAC) analysis. The proposed segmentation algorithm makes use of gray-scale annular closings to identify free-lying nuclei-like objects together with marker-based watershed segmentation to accurately delineate the nuclear boundaries. The algorithm also employs artifact rejection based on size, shape, and granularity to ensure only the nuclei of intermediate squamous epithelial cells are retained. An evaluation of the performance of the algorithm relative to expert manual segmentation of 33 fields-of-view from 11 Pap smear slides is also presented. The results show that the sensitivity and specificity of nucleus detection is 94.71% and 85.30% respectively, and that the accuracy of segmentation, measured using the Dice coefficient, of the detected nuclei is 97.30\ub11.3%

    Automated Detection of DCIS in Whole-Slide H&E Stained Breast Histopathology Images

    No full text
    This paper presents and evaluates a fully automatic method for detection of ductal carcinoma in situ (DCIS) in digitized hematoxylin and eosin (H&E) stained histopathological slides of breast tissue. The proposed method applies multi-scale superpixel classification to detect epithelial regions in whole-slide images (WSIs). Subsequently, spatial clustering is utilized to delineate regions representing meaningful structures within the tissue such as ducts and lobules. A region-based classifier employing a large set of features including statistical and structural texture features and architectural features is then trained to discriminate between DCIS and benign/normal structures. The system is evaluated on two datasets containing a total of 205 WSIs of breast tissue. Evaluation was conducted both on the slide and the lesion level using FROC analysis. The results show that to detect at least one true positive in every DCIS containing slide, the system finds 2.6 false positives per WSI. The results of the per-lesion evaluation show that it is possible to detect 80% and 83% of the DCIS lesions in an abnormal slide, at an average of 2.0 and 3.0 false positives per WSI, respectively. Collectively, the result of the experiments demonstrate the efficacy and accuracy of the proposed method as well as its potential for application in routine pathological diagnostics. To the best of our knowledge, this is the first DCIS detection algorithm working fully automatically on WSIs

    Quantitative analysis of stain variability in histology slides and an algorithm for standardization

    Get PDF
    Contains fulltext : 132653.pdf (preprint version ) (Open Access

    Stain specific standardization of whole-slide histopathological images

    No full text
    Contains fulltext : 149036.pdf (Publisher’s version ) (Closed access
    • …
    corecore