1,188 research outputs found

    Histochemical Evaluation of Human Prostatic Tissues with Cratylia mollis Seed Lectin

    Get PDF
    Lectins, proteins which selectively recognize carbohydrates, have been used in histochemistry for the evaluation of changes in glycosylation in processes of cellular differentiation and/or dedifferentiation. Cratylia mollis seed lectins (Cramoll 1,4 and Cramoll 3), conjugated to horseradish peroxidase, were used as histochemical probes in human prostate tissues: normal (NP), hyperplasia (BPH), and prostate carcinoma (PCa). The staining pattern of Con-A and Cramoll 1,4 in BPH was more intense than in NP. These lectins also showed staining differences between BPH and PCa; the latter showing decreased staining intensity with an increased degree of malignancy. PNA and Cramoll 3 stained epithelial cells similarly in all diagnoses although they did present intense staining of PCa glands lumen. Corpora amylacea were not differentially recognized by any of the lectins. Cramoll 1,4 and Cramoll 3 seed lectins present themselves as candidates for histochemical probes for prostate pathologies when compared to commercial lectins such as Con-A and PNA

    Zymomonas mobilis: a promising microorganism for prebiotic production

    Get PDF
    Zymomonas mobilis (ZM) is an ethanologenic bacterium with outstanding characteristics which makes it an interesting chassis for the biotechnological production of prebiotics. Fructooligosaccharides (FOS) are promising prebiotics in the increasing market of functional food. In this work, a Box-Behnken design approach was used to optimize the medium composition and maximize the FOS content. Under optimal conditions, 45.3 g/L of FOS were obtained. Sucrose was the most significant variable; thus, its concentration was further increased to 350 g/L leading to a 1.13-fold enhance in FOS titer. Afterwards, a scale-up to bioreactor was performed resulting in a high yield, content and productivity of FOS (58 %, 156.5 g/L 4.8 g/L h). Furthermore, 45 g/L of sorbitol and 8 g/L of levan were also produced. After purification of the FOS mixture through an activated charcoal column, an in vitro model using human fecal inoculum was used to assess its prebiotic potential. The results suggest that the produced prebiotic mixture has potential to be used to improve the human health. The present work describes for the first time the production of a prebiotic mixture with ZM ZM4 in an in vivo single-step approach that has potential to be commercialized as functional food ingredient.João Rainha, Beatriz B. Cardoso and Daniela Gomes acknowledge their grants (UMINHO/BPD/4/2019, SFRH/BD/138325/2018, SFRH/BD/132324/2017, and SFRH/BD/04433/2020, respectively) from Portuguese Foundation for Science and Technology (FCT). The study received financial support from Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UIDB/04469/2020 unit and the project FoSynBio (POCI-01-0145-FEDER-029549).info:eu-repo/semantics/publishedVersio

    Luminescence studies on green emitting InGaN/GaN MQWs implanted with nitrogen

    Get PDF
    We studied the optical properties of metalorganic chemical vapour deposited (MOCVD) InGaN/GaN multiple quantum wells (MQW) subjected to nitrogen (N) implantation and post-growth annealing treatments. The optical characterization was carried out by means of temperature and excitation density-dependent steady state photoluminescence (PL) spectroscopy, supplemented by room temperatura PL excitation (PLE) and PL lifetime (PLL) measurements. The as-grown and as-implanted samples were found to exhibit a single green emission band attributed to localized excitons in the QW, although the N implantation leads to a strong reduction of the PL intensity. The green band was found to be surprisingly stable on annealing up to 14006C. A broad blue band dominates the low temperature PL after termal annealing in both samples. This band is more intense for the implanted sample, suggesting that defects generated by N implantation, likely related to the diffusion/segregation of indium (In), have been optically activated by the thermal treatmentThe authors acknowledge FCT for the final funding from PEst-C/CTM/LA0025/2013-14, PTDC/CTM-NAN/2156/2012, PTDC/FIS-NAN/0973/2012 and RECI/FIS-NAN/0183/ 2012 (FCOMP-01-0124-FEDER-027494) projects. J. Rodrigues thanks FCT for her PhD grant, SFRH/BD/76300/2011. ARC acknowledges financial support under the ‘Juan de la Cierva’ program (MECO, Spain) through grant JCI-2012-14509

    Comparison of the performance of hydraulic lime- and clay-based grouts in the repair of rammed earth

    Get PDF
    Earth constructions constitute an important part of the built heritage and are spread worldwide. Rammed earth is among the most used earth construction techniques, though it exhibits a high seismic vulnerability. Nevertheless, the structural behaviour of rammed earth structures is still insufficiently comprehended. Thus, the preservation of this built heritage requires exhaustive characterisation of its mechanical and structural behaviours, as well as the development and validation of adequate intervention solutions. In this context, this paper presents an experimental program aimed at evaluating the effectiveness of grout injection to repair cracks and at further characterising the in-plane shear behaviour of rammed earth walls. The experimental program included the testing of rammed earth wallets under diagonal compression, which were subsequently repaired with injection of a clay-based or a hydraulic lime-based grout, and retested. Furthermore, sonic tests were conducted on the wallets before the destructive tests. The obtained results allowed to highlight that both grouts led to similar repairing performances, though the interlocking contribution promoted by the coarse particles of the rammed earth to the shear behaviour was found to be irrecoverable.Programa Operacional Temático Factores de Competitividade (POCI-01-0145-FEDER-007633

    Targeting the Immune System with Plant Lectins to Combat Microbial Infections

    Get PDF
    The arsenal of drugs available to treat infections caused by eukaryotic and prokaryotic microbes has been declining exponentially due to antimicrobial resistance phenomenon, leading to an urgent need to develop new therapeutic strategies. Host-directed immunotherapy has been reported as an attractive option to treat microbial infections. It consists in the improvement of host defenses by increasing the expression of inflammatory mediators and/or controlling of inflammation-induced tissue injury. Although the in vitro antimicrobial and immunomodulatory activities of lectins have been extensively demonstrated, few studies have evaluated their in vivo effects on experimental models of infections. This review aims to highlight the experimental use of immunomodulatory plant lectins to improve the host immune response against microbial infections. Lectins have been used in vivo both prophylactically and therapeutically resulting in the increased survival of mice under microbial challenge. Other studies successfully demonstrated that lectins could be used in combination with parasite antigens in order to induce a more efficient immunization. Therefore, these plant lectins represent new candidates for management of microbial infections. Furthermore, immunotherapeutic studies have improved our knowledge about the mechanisms involved in host–pathogen interactions, and may also help in the discovery of new drug targets

    Brazilian Bidens pilosa Linné yields fraction containing quercetin-derived flavonoid with free radical scavenger activity and hepatoprotective effects

    Get PDF
    Bidens pilosa is a plant used by Amazonian and Asian folks for some hepatopathies. The hydroethanol crude extract and three fractions were assessed for antioxidant and hepatoprotective effects. Higher levels of scavenger activity on the 1,1-diphenyl-2-picrylhydrazyl radical, inhibition of deoxyribose oxidation and lipid peroxidation in vitro were detected for the ethyl acetate fraction (IC50~4.3–32.3 µg/ml) followed by the crude extract (IC50~14.2–98.0 µg/ml). The ethyl acetate fraction, again followed by the crude extract, showed high contents of total soluble polyphenols (3.6±0.2 and 2.1±0.2 GAE/mg, respectively) and presence of a quercetin-derived flavonoid identified as quercetin 3,3′-dimethyl ether 7-O-β-D-glycopyranoside. Both products were assayed for hepatoprotector effects against CCl4-induced liver injury in mice. Markers of oxidative stress and hepatic injury were evaluated. The results showed that the 10-day pretreatments (15 mg/kg, p.o.) protected the livers against injury by blocking CCl4-induced lipid peroxidation and protein carbonylation and the DNA fragmentation was decreased (~60%). The pretreatments avoided the loss of the plasma ferric reducing/antioxidant power and the elevation of serum transaminases and lactate dehydrogenase activities. The results suggest that the main constituents responsible for the hepatoprotective effects with free radical scavenger power associated are well extracted by performing fractionation with ethyl acetate. The findings support the Brazilian traditional use of this plant and justify further evaluations for the therapeutic efficacy and safety of the constituents of the ethyl acetate fraction to treat some liver diseases

    Photobiomodulation reduces the cytokine storm syndrome associated with Covid-19 in the zebrafish model

    Get PDF
    Although the exact mechanism of the pathogenesis of COVID-19 is not fully understood, oxidative stress and the release of pro-inflammatory cytokines have been highlighted as playing a vital role in the pathogenesis of the disease. In this sense, alternative treatments are needed to reduce the inflammation caused by COVID-19. Therefore, this study aimed to investigate the potential effect of red PBM as an attractive therapy to downregulate the cytokine storm caused by COVID-19 from a zebrafish model. RT-PCR analyses and protein-protein interaction prediction among SARS-CoV-2 and Danio rerio proteins showed that rSpike was responsible for generating systemic inflammatory processes with significantly increased pro-inflammatory (il1b, il6, tnfa, and nfkbiab), oxidative stress (romo1) and energy metabolism (slc2a1a, coa1) mRNA markers, with a pattern like those observed in COVID-19 cases in humans. On the other hand, PBM treatment decreased the mRNA levels of these pro-inflammatory and oxidative stress markers compared with rSpike in various tissues, promoting an anti-inflammatory response. Conversely, PBM promotes cellular and tissue repair of injured tissues and significantly increases the survival rate of rSpike-inoculated individuals. Additionally, metabolomics analysis showed that the most impacted metabolic pathways between PBM and the rSpike-treated groups were related to steroid metabolism, immune system, and lipids metabolism. Together, our findings suggest that the inflammatory process is an incisive feature of COVID-19, and red PBM can be used as a novel therapeutic agent for COVID-19 by regulating the inflammatory response. Nevertheless, the need for more clinical trials remains, and there is a significant gap to overcome before clinical trials.publishedVersio
    corecore