9,506 research outputs found

    Faraday-rotation fluctuation spectroscopy with static and oscillating magnetic fields

    Full text link
    By Faraday-rotation fluctuation spectroscopy one measures the spin noise via Faraday-induced fluctuations of the polarization plane of a laser transmitting the sample. In the fist part of this paper, we present a theoretical model of recent experiments on alkali gas vapors and semiconductors, done in the presence of a {\em static} magnetic field. In a static field, the spin noise shows a resonance line, revealing the Larmor frequency and the spin coherence time T2T_2 of the electrons. Second, we discuss the possibility to use an {\em oscillating} magnetic field in the Faraday setup. With an oscillating field applied, one can observe multi-photon absorption processes in the spin noise. Furthermore an oscillating field could also help to avoid line broadening due to structural or chemical inhomogeneities in the sample, and thereby increase the precision of the spin-coherence time measurement.Comment: 5 pages, 7 figure

    All electrical manipulation of magnetization dynamics in a ferromagnet by antiferromagnets with anisotropic spin Hall effects

    Get PDF
    We investigate spin-orbit torques of metallic CuAu-I-type antiferromagnets using spin-torque ferromagnetic resonance tuned by a dc-bias current. The observed spin torques predominantly arise from diffusive transport of spin current generated by the spin Hall effect. We find a growth-orientation dependence of the spin torques by studying epitaxial samples, which may be correlated to the anisotropy of the spin Hall effect. The observed anisotropy is consistent with first-principles calculations on the intrinsic spin Hall effect. Our work demonstrates large tunable spin-orbit effects in magnetically-ordered materials.Comment: 7 pages, 6 figures, to appear in Phys. Rev. B (2015

    Theory of spin Hall magnetoresistance

    Full text link
    We present a theory of the spin Hall magnetoresistance (SMR) in multilayers made from an insulating ferromagnet F, such as yttrium iron garnet (YIG), and a normal metal N with spin-orbit interactions, such as platinum (Pt). The SMR is induced by the simultaneous action of spin Hall and inverse spin Hall effects and therefore a non-equilibrium proximity phenomenon. We compute the SMR in F|N and F|N|F layered systems, treating N by spin-diffusion theory with quantum mechanical boundary conditions at the interfaces in terms of the spin-mixing conductance. Our results explain the experimentally observed spin Hall magnetoresistance in N|F bilayers. For F|N|F spin valves we predict an enhanced SMR amplitude when magnetizations are collinear. The SMR and the spin-transfer torques in these trilayers can be controlled by the magnetic configuration

    Typical local measurements in generalised probabilistic theories: emergence of quantum bipartite correlations

    Get PDF
    What singles out quantum mechanics as the fundamental theory of Nature? Here we study local measurements in generalised probabilistic theories (GPTs) and investigate how observational limitations affect the production of correlations. We find that if only a subset of typical local measurements can be made then all the bipartite correlations produced in a GPT can be simulated to a high degree of accuracy by quantum mechanics. Our result makes use of a generalisation of Dvoretzky's theorem for GPTs. The tripartite correlations can go beyond those exhibited by quantum mechanics, however.Comment: 5 pages, 1 figure v2: more details in the proof of the main resul

    Mixtures of Charged Colloid and Neutral Polymer: Influence of Electrostatic Interactions on Demixing and Interfacial Tension

    Full text link
    The equilibrium phase behavior of a binary mixture of charged colloids and neutral, non-adsorbing polymers is studied within free-volume theory. A model mixture of charged hard-sphere macroions and ideal, coarse-grained, effective-sphere polymers is mapped first onto a binary hard-sphere mixture with non-additive diameters and then onto an effective Asakura-Oosawa model [S. Asakura and F. Oosawa, J. Chem. Phys. 22, 1255 (1954)]. The effective model is defined by a single dimensionless parameter -- the ratio of the polymer diameter to the effective colloid diameter. For high salt-to-counterion concentration ratios, a free-volume approximation for the free energy is used to compute the fluid phase diagram, which describes demixing into colloid-rich (liquid) and colloid-poor (vapor) phases. Increasing the range of electrostatic interactions shifts the demixing binodal toward higher polymer concentration, stabilizing the mixture. The enhanced stability is attributed to a weakening of polymer depletion-induced attraction between electrostatically repelling macroions. Comparison with predictions of density-functional theory reveals a corresponding increase in the liquid-vapor interfacial tension. The predicted trends in phase stability are consistent with observed behavior of protein-polysaccharide mixtures in food colloids.Comment: 16 pages, 5 figure

    Two-channel pseudogap Kondo and Anderson models: Quantum phase transitions and non-Fermi liquids

    Full text link
    We discuss the two-channel Kondo problem with a pseudogap density of states, \rho(\w)\propto|\w|^r, of the bath fermions. Combining both analytical and numerical renormalization group techniques, we characterize the impurity phases and quantum phase transitions of the relevant Kondo and Anderson models. The line of stable points, corresponding to the overscreened non-Fermi liquid behavior of the metallic r=0r=0 case, is replaced by a stable particle-hole symmetric intermediate-coupling fixed point for 0. For r>\rmax, this non-Fermi liquid phase disappears, and instead a critical fixed point with an emergent spin--channel symmetry appears, controlling the quantum phase transition between two phases with stable spin and channel moments, respectively. We propose low-energy field theories to describe the quantum phase transitions, all being formulated in fermionic variables. We employ epsilon expansion techniques to calculate critical properties near the critical dimensions r=0r=0 and r=1r=1, the latter being potentially relevant for two-channel Kondo impurities in neutral graphene. We find the analytical results to be in excellent agreement with those obtained from applying Wilson's numerical renormalization group technique.Comment: Added reference

    Quantum properties of dichroic silicon vacancies in silicon carbide

    Get PDF
    The controlled generation and manipulation of atom-like defects in solids has a wide range of applications in quantum technology. Although various defect centres have displayed promise as either quantum sensors, single photon emitters or light-matter interfaces, the search for an ideal defect with multi-functional ability remains open. In this spirit, we investigate here the optical and spin properties of the V1 defect centre, one of the silicon vacancy defects in the 4H polytype of silicon carbide (SiC). The V1 centre in 4H-SiC features two well-distinguishable sharp optical transitions and a unique S=3/2 electronic spin, which holds promise to implement a robust spin-photon interface. Here, we investigate the V1 defect at low temperatures using optical excitation and magnetic resonance techniques. The measurements, which are performed on ensemble, as well as on single centres, prove that this centre combines coherent optical emission, with up to 40% of the radiation emitted into the zero-phonon line (ZPL), a strong optical spin signal and long spin coherence time. These results single out the V1 defect in SiC as a promising system for spin-based quantum technologies
    corecore