3,076 research outputs found
Normal and Abnormal Personality Traits are Associated with Marital Satisfaction for both Men and Women: An Actor–Partner Interdependence Model Analysis
Research has demonstrated associations between relationship satisfaction and personality traits. Using the Actor–Partner Interdependence Model, we explored associations between self-reported relationship satisfaction in couples (n = 118) and various measures of normal and abnormal personality, including higher-order dimensions of PE/Extraversion, NE/Neuroticism, Constraint (CON), and their lower-order facets. We also examined gender differences and moderators of associations. Consistent with the Vulnerability Stress Adaptation Model, self- and partner-reported NE and PE were related to satisfaction, and their lower-order traits demonstrated differential associations with satisfaction. Further, abnormal personality traits specific to the interpersonal domain and personality disorder symptoms demonstrated effects. Relationship length emerged as a significant moderator, with associations weakening as relationship duration increased
Spontaneous dressed-state polarization in the strong driving regime of cavity QED
We utilize high-bandwidth phase quadrature homodyne measurement of the light
transmitted through a Fabry-Perot cavity, driven strongly and on resonance, to
detect excess phase noise induced by a single intracavity atom. We analyze the
correlation properties and driving-strength dependence of the atom-induced
phase noise to establish that it corresponds to the long-predicted phenomenon
of spontaneous dressed-state polarization. Our experiment thus provides a
demonstration of cavity quantum electrodynamics in the strong driving regime,
in which one atom interacts strongly with a many-photon cavity field to produce
novel quantum stochastic behavior.Comment: 4 pages, 4 color figure
Polarization rotation via a monoclinic phase in the piezoelectric 92%PbZn1/3Nb2/3O3-8%PbTiO3
The origin of ultrahigh piezoelectricity in the relaxor ferroelectric
PbZn1/3Nb2/3O3-PbTiO3 was studied with an electric field applied along the
[001] direction. The zero-field rhombohedral R phase starts to follow the
direct polarization path to tetragonal symmetry via an intermediate monoclinic
M phase, but then jumps irreversibly to an alternate path involving a different
type of monoclinic distortion. Details of the structure and domain
configuration of this novel phase are described. This result suggests that
there is a nearby R-M phase boundary as found in the Pb(Ti,Zr)O3 system.Comment: REVTeX file. 4 pages. New version after referees' comment
Neutron Diffraction Study of Field Cooling Effects on Relaxor Ferroelectrics Pb[(Zn_{1/3} Nb_{2/3})_{0.92} Ti_{0.08}] O_{3}
High-temperature (T) and high-electric-field (E) effects on Pb[(Zn_{1/3}
Nb_{2/3})_{0.92} Ti_{0.08}]O_3 (PZN-8%PT) were studied comprehensively by
neutron diffraction in the ranges 300 <= T <= 550 K and 0 <= E <= 15 kV/cm. We
have focused on how phase transitions depend on preceding thermal and
electrical sequences. In the field cooling process (FC, E parallel [001] >= 0.5
kV/cm), a successive cubic (C) --> tetragonal (T) --> monoclinic (M_C)
transition was observed. In the zero field cooling process (ZFC), however, we
have found that the system does not transform to the rhombohedral (R) phase as
widely believed, but to a new, unidentified phase, which we call X. X gives a
Bragg peak profile similar to that expected for R, but the c-axis is always
slightly shorter than the a-axis. As for field effects on the X phase, we found
an irreversible X --> M_C transition via another monoclinic phase (M_A) as
expected from a previous report [Noheda et al. Phys. Rev. Lett. 86, 3891
(2001)]. At a higher electric field, we confirmed a c-axis jump associated with
the field-induced M_C --> T transition, which was observed by strain and x-ray
diffraction measurements.Comment: 8 pages, 9 figures, revise
Modelling the dynamics of turbulent floods
Consider the dynamics of turbulent flow in rivers, estuaries and floods. Based on the widely used k-epsilon model for turbulence, we use the techniques of centre manifold theory to derive dynamical models for the evolution of the water depth and of vertically averaged flow velocity and turbulent parameters. This new model for the shallow water dynamics of turbulent flow: resolves the vertical structure of the flow and the turbulence; includes interaction between turbulence and long waves; and gives a rational alternative to classical models for turbulent environmental flows
Anisotropic eddy-viscosity concept for strongly detached unsteady flows
The accurate prediction of the flow physics around bodies at high Reynolds number is a challenge in aerodynamics nowadays. In the context of turbulent flow modeling, recent advances like large eddy simulation (LES) and hybrid methods [detached eddy simulation (DES)] have considerably improved the physical relevance of the numerical simulation. However, the LES approach is still limited to the low-Reynolds-number range concerning wall flows. The unsteady Reynolds-averaged Navier–Stokes (URANS) approach remains a widespread and robust methodology for complex flow computation, especially in the near-wall region. Complex statistical models like second-order closure schemes [differential Reynolds stress modeling (DRSM)] improve the prediction of these properties and can provide an efficient simulationofturbulent stresses. Fromacomputational pointofview, the main drawbacks of such approaches are a higher cost, especially in unsteady 3-D flows and above all, numerical instabilities
An analytical treatment of the Clock Paradox in the framework of the Special and General Theories of Relativity
In this paper we treat the so called clock paradox in an analytical way by
assuming that a constant and uniform force F of finite magnitude acts
continuously on the moving clock along the direction of its motion assumed to
be rectilinear. No inertial motion steps are considered. The rest clock is
denoted as (1), the to-and-fro moving clock is (2), the inertial frame in which
(1) is at rest in its origin and (2) is seen moving is I and, finally, the
accelerated frame in which (2) is at rest in its origin and (1) moves forward
and backward is A. We deal with the following questions: I) What is the effect
of the finite force acting on (2) on the proper time intervals measured by the
two clocks when they reunite? Does a differential aging between the two clocks
occur, as it happens when inertial motion and infinite values of the
accelerating force is considered? The Special Theory of Relativity is used in
order to describe the hyperbolic motion of (2) in the frame I II) Is this
effect an absolute one, i.e. does the accelerated observer A comoving with (2)
obtain the same results as that in I, both qualitatively and quantitatively, as
it is expected? We use the General Theory of Relativity in order to answer this
question.Comment: LaTex2e, 19 pages, no tables, no figures. Rewritten version, it
amends the previous one whose results about the treatment with General
Relativity were wrong. References added. Eq. (55) corrected. More refined
version. Comments and suggestions are warmly welcom
Genetic Correlations in Mutation Processes
We study the role of phylogenetic trees on correlations in mutation
processes. Generally, correlations decay exponentially with the generation
number. We find that two distinct regimes of behavior exist. For mutation rates
smaller than a critical rate, the underlying tree morphology is almost
irrelevant, while mutation rates higher than this critical rate lead to strong
tree-dependent correlations. We show analytically that identical critical
behavior underlies all multiple point correlations. This behavior generally
characterizes branching processes undergoing mutation.Comment: revtex, 8 pages, 2 fig
- …
