17 research outputs found

    Beak and feather disease virus in wild and captive parrots: an analysis of geographic and taxonomic distribution and methodological trends

    Get PDF
    Psittacine beak and feather disease (PBFD) has emerged in recent years as a major threat to wild parrot populations and is an increasing concern to aviculturists and managers of captive populations. Pathological and serological tests for screening for the presence of beak and feather disease virus (BFDV) are a critical component of efforts to manage the disease and of epidemiological studies. Since the disease was first reported in the mid-1970s, screening for BFDV has been conducted in numerous wild and captive populations. However, at present, there is no current and readily accessible synthesis of screening efforts and their results. Here, we consolidate information collected from 83 PBFD- and BFDV-based publications on the primary screening methods being used and identify important knowledge gaps regarding potential global disease hotspots. We present trends in research intensity in this field and critically discuss advances in screening techniques and their applications to both aviculture and to the management of threatened wild populations. Finally, we provide an overview of estimates of BFDV prevalence in captive and wild flocks alongside a complete list of all psittacine species in which the virus has been confirmed. Our evaluation highlights the need for standardised diagnostic tests and more emphasis on studies of wild populations, particularly in view of the intrinsic connection between global trade in companion birds and the spread of novel BFDV strains into wild populations. Increased emphasis should be placed on the screening of captive and wild parrot populations within their countries of origin across the Americas, Africa and Asia

    Data for: Adenoviruses in free-ranging Australian bearded dragons (Pogona spp.)

    No full text
    Adenoviruses are a relatively common infection of reptiles globally and are most often reported in captive central bearded dragons (Pogona vitticeps). We report the first evidence of adenoviruses in bearded dragons in their native habitat in Australia. Oral-cloacal swabs and blood samples were collected from 48 free-ranging bearded dragons from four study populations: western bearded dragons (P. minor minor) from Western Australia (n = 4), central bearded dragons (P. vitticeps) from central Australia (n = 2) and western New South Wales (NSW) (n = 29), and coastal bearded dragons (P. barbata) from south-east Queensland (n = 13). Samples were tested for the presence of adenoviruses using a broadly reactive (pan-adenovirus) PCR and a PCR specific for agamid adenovirus-1. Agamid adenovirus-1 was detected in swabs from eight of the dragons from western NSW and one of the coastal bearded dragons. Lizard atadenovirus A was detected in one of the dragons from western NSW. Adenoviruses were not detected in any blood sample. All bearded dragons, except one, were apparently healthy and so finding these adenoviruses in these animals is consistent with bearded dragons being natural hosts for these viruses

    Data for: Adenoviruses in free-ranging Australian bearded dragons (Pogona spp.)

    No full text
    Adenoviruses are a relatively common infection of reptiles globally and are most often reported in captive central bearded dragons (Pogona vitticeps). We report the first evidence of adenoviruses in bearded dragons in their native habitat in Australia. Oral-cloacal swabs and blood samples were collected from 48 free-ranging bearded dragons from four study populations: western bearded dragons (P. minor minor) from Western Australia (n = 4), central bearded dragons (P. vitticeps) from central Australia (n = 2) and western New South Wales (NSW) (n = 29), and coastal bearded dragons (P. barbata) from south-east Queensland (n = 13). Samples were tested for the presence of adenoviruses using a broadly reactive (pan-adenovirus) PCR and a PCR specific for agamid adenovirus-1. Agamid adenovirus-1 was detected in swabs from eight of the dragons from western NSW and one of the coastal bearded dragons. Lizard atadenovirus A was detected in one of the dragons from western NSW. Adenoviruses were not detected in any blood sample. All bearded dragons, except one, were apparently healthy and so finding these adenoviruses in these animals is consistent with bearded dragons being natural hosts for these viruses.THIS DATASET IS ARCHIVED AT DANS/EASY, BUT NOT ACCESSIBLE HERE. TO VIEW A LIST OF FILES AND ACCESS THE FILES IN THIS DATASET CLICK ON THE DOI-LINK ABOV

    Effect of benzylpenicillin on intravenous pharmacokinetics of acyclovir in red‐eared slider turtles ( Trachemys scripta elegans

    No full text
    The aim of this study was to determine the effect of benzylpenicillin on the pharmacokinetics of acyclovir in red-eared slider turtles (Trachemys scripta elegans). Six clinically healthy red-eared slider turtles weighing 400 and 580 g were used for the study. Acyclovir (40 mg/kg) and benzylpenicillin (30 mg/kg) were administered intravenously to turtles. In the study, the cross-pharmacokinetic design (2 x 2) with a 30-day washout period was performed in two periods. Plasma concentrations of acyclovir were assayed using the high-performance liquid chromatography with fluorescence detection. Pharmacokinetic parameters were calculated by two-compartment open pharmacokinetic model. Following the administration of acyclovir alone, elimination half-life (t(1/2)(beta)), area under the plasma concentration-time curve (AUC), total clearance (Cl-T), and volume of distribution at steady-state (V-dss) were 20.12 hr, 1,372 hr * mu g/mL, 0.03 L hr(-1) kg(-1), and 0.84 L/kg, respectively. Benzylpenicillin administration increased t(1/2)(beta), AUC, and V-dss while decreased Cl-T of acyclovir. These results showed that benzylpenicillin changed the pharmacokinetics of acyclovir following simultaneous administration in turtles. However, further research is needed to determine molecular mechanism of interaction in turtle
    corecore