812 research outputs found

    Responsive Giant Vesicles filled with Poly(N-isopropylacrylamide) Sols or Gels

    Get PDF
    4 pagesInternational audienceWe prepared giant unilamellar vesicles (GUVs) enclosing solutions or covalent gels of Poly(Nisopropylacrylamide) (PolyNipam). Concentrated suspensions of GUVs were prepared by applying an alternative field on a lipid film hydrated by a monomer solution containing N-isopropylacrylamide, crosslinker (N,N-methylene-bis-acrylamide), initiator and sucrose. Vesicle inner medium was polymerised and crosslinked by UV irradiation of the suspension, yielding viscous vesicles enclosing a solution of linear PolyNipam chains (when no bisacrylamide was used) or elastic vesicles filled with a covalent PolyNipam gel. We show that gel-filled vesicles are responsive systems triggered by the temperature: they shrink, reducing by a factor eight their volume below the critical temperature (32 â—¦C in water, lower in glucose solution) and re-swell in a reversible and reproducible way upon decreasing temperature. In both cases, we show that the vesicle lipid membrane interacts with the internal polymer, resulting in an strong resistance of the vesicles to external mechanical stresses (enhanced tension of lysis)

    Human-centered visualization technologies for patient monitoring are the future: a narrative review

    Get PDF
    Medical technology innovation has improved patient monitoring in perioperative and intensive care medicine and continuous improvement in the technology is now a central focus in this field. Because data density increases with the number of parameters captured by patient-monitoring devices, its interpretation has become more challenging. Therefore, it is necessary to support clinicians in managing information overload while improving their awareness and understanding about the patient’s health status. Patient monitoring has almost exclusively operated on the single-sensor–single-indicator principle—a technology-centered way of presenting data in which specific parameters are measured and displayed individually as separate numbers and waves. An alternative is user-centered medical visualization technology, which integrates multiple pieces of information (e.g., vital signs), derived from multiple sensors into a single indicator—an avatar-based visualization—that is a meaningful representation of the real-world situation. Data are presented as changing shapes, colors, and animation frequencies, which can be perceived, integrated, and interpreted much more efficiently than other formats (e.g., numbers). The beneficial effects of these technologies have been confirmed in computer-based simulation studies; visualization technologies improved clinicians’ situation awareness by helping them effectively perceive and verbalize the underlying medical issue, while improving diagnostic confidence and reducing workload. This review presents an overview of the scientific results and the evidence for the validity of these technologies

    Environmental sustainability from anesthesia providers’ perspective: a qualitative study

    Get PDF
    Background The world faces a significant global health threat – climate change, which makes creating more environmentally sustainable healthcare systems necessary. As a resource-intensive specialty, anesthesiology contributes to a substantial fraction of healthcare’s environmental impact. This alarming situation invites us to reconsider the ecological health determinants and calls us to action. Methods We conducted a single-center qualitative study involving an online survey to explore the environmental sustainability from anesthesia providers’ perspectives in a center implementing internal environmentally-sustainable anesthesia guidelines. We asked care providers how they perceive the importance of environmental issues in their work; the adverse effects they see on ecological sustainability in anesthesia practice; what measures they take to make anesthesia more environmentally friendly; what barriers they face in trying to do so; and why they are unable to adopt ecologically friendly practices in some instances. Using a thematic analysis approach, we identified dominating themes in participants’ responses. Results A total of 62 anesthesia providers completed the online survey. 89% of the participants stated that environmental sustainability is essential in their work, and 95% reported that they implement measures to make their practice greener. A conscious choice of anesthetics was identified as the most common step the respondents take to reduce the environmental impact of anesthesia. Waste production and improper waste management was the most frequently mentioned anesthesia-associated threat to the environment. Lacking knowledge/teaching in sustainability themes was recognized as a crucial barrier to achieving ecology goals. Conclusions Sustainable anesthesia initiatives have the potential to both encourage engagement among anesthesia providers and raise awareness of this global issue. These findings inspire opportunities for action in sustainable anesthesia and broaden the capacity to decrease the climate impact of health care

    Study of the volume and spin collapse in orthoferrite LuFeO_3 using LDA+U

    Full text link
    Rare earth (R) orthoferrites RFeO_3 exhibit large volume transitions associated with a spin collapse. We present here ab initio calculations on LuFeO_3. We show that taking into account the strong correlation among the Fe-3d electrons is necessary. Indeed, with the LDA+U method in the Projector Augmented Wave (PAW), we are able to describe the isostructural phase transition at 50 GPa, as well as a volume discontinuity of 6.0% at the transition and the considerable reduction of the magnetic moment on the Fe ions. We further investigate the effect of the variation of U and J and find a linear dependence of the transition pressure on these parameters. We give an interpretation for the non-intuitive effect of J. This emphasizes the need for a correct determination of these parameters especially when the LDA+U is applied to systems (e.g in geophysical investigations) where the transition pressure is a priori unknown

    Determinantal Characterization of Canonical Curves and Combinatorial Theta Identities

    Full text link
    We characterize genus g canonical curves by the vanishing of combinatorial products of g+1 determinants of Brill-Noether matrices. This also implies the characterization of canonical curves in terms of (g-2)(g-3)/2 theta identities. A remarkable mechanism, based on a basis of H^0(K_C) expressed in terms of Szego kernels, reduces such identities to a simple rank condition for matrices whose entries are logarithmic derivatives of theta functions. Such a basis, together with the Fay trisecant identity, also leads to the solution of the question of expressing the determinant of Brill-Noether matrices in terms of theta functions, without using the problematic Klein-Fay section sigma.Comment: 35 pages. New results, presentation improved, clarifications added. Accepted for publication in Math. An

    User Perceptions of Different Vital Signs Monitor Modalities During High-Fidelity Simulation: Semiquantitative Analysis

    Full text link
    Background: Patient safety during anesthesia is crucially dependent on the monitoring of vital signs. However, the values obtained must also be perceived and correctly classified by the attending care providers. To facilitate these processes, we developed Visual-Patient-avatar, an animated virtual model of the monitored patient, which innovatively presents numerical and waveform data following user-centered design principles. After a high-fidelity simulation study, we analyzed the participants' perceptions of 3 different monitor modalities, including this newly introduced technique. Objective: The aim of this study was to collect and evaluate participants' opinions and experiences regarding 3 different monitor modalities, which are Visual-Patient-avatar, Split Screen (avatar and Conventional monitor alongside each other), and Conventional monitor after using them during simulated critical anesthetic events. Methods: This study was a researcher-initiated, single-center, semiquantitative study. We asked 92 care providers right after finishing 3 simulated emergency scenarios about their positive and negative opinions concerning the different monitor modalities. We processed the field notes obtained and derived the main categories and corresponding subthemes following qualitative research methods. Results: We gained a total of 307 statements. Through a context-based analysis, we identified the 3 main categories of "Visual-Patient-avatar," "Split Screen," and "Conventional monitor" and divided them into 11 positive and negative subthemes. We achieved substantial interrater reliability in assigning the statements to 1 of the topics. Most of the statements concerned the design and usability features of the avatar or the Split Screen mode. Conclusions: This study semiquantitatively reviewed the clinical applicability of the Visual-Patient-avatar technique in a high-fidelity simulation study and revealed the strengths and limitations of the avatar only and Split Screen modality. In addition to valuable suggestions for improving the design, the requirement for training prior to clinical implementation was emphasized. The responses to the Split Screen suggest that this symbiotic modality generates better situation awareness in combination with numerical data and accurate curves. As a subsequent development step, a real-life introduction study is planned, where we will test the avatar in Split Screen mode under actual clinical conditions. Keywords: avatar; patient monitoring; semiquantitative research; simulation study; situation awareness; user-centered design; visual-patient-avata

    Improving Visual-Patient-Avatar Design Prior to Its Clinical Release: A Mixed Qualitative and Quantitative Study

    Full text link
    Visual-Patient-avatar, an avatar-based visualisation of patient monitoring, is a newly developed technology aiming to promote situation awareness through user-centred design. Before the technology’s introduction into clinical practice, the initial design used to validate the concept had to undergo thorough examination and adjustments where necessary. This mixed qualitative and quantitative study, consisting of three different study parts, aimed to create a design with high user acceptance regarding perceived professionalism and potential for identification while maintaining its original functionality. The first qualitative part was based on structured interviews and explored anaesthesia personnel’s first impressions regarding the original design. Recurrent topics were identified using inductive coding, participants’ interpretations of the vital sign visualisations analysed and design modifications derived. The second study part consisted of a redesign process, in which the visualisations were adapted according to the results of the first part. In a third, quantitative study part, participants rated Likert scales about Visual-Patient-avatar’s appearance and interpreted displayed vital signs in a computer-based survey. The first, qualitative study part included 51 structured interviews. Twenty-eight of 51 (55%) participants mentioned the appearance of Visual-Patient-avatar. In 23 of 51 (45%) interviews, 26 statements about the general impression were identified with a balanced count of positive (14 of 26) and negative (12 of 26) comments. The analysis of vital sign visualisations showed deficits in several vital sign visualisations, especially central venous pressure. These findings were incorporated into part two, the redesign of Visual-Patient-avatar. In the subsequent quantitative analysis of study for part three, 20 of 30 (67%) new participants agreed that the avatar looks professional enough for medical use. Finally, the participants identified 73% (435 of 600 cases) of all vital sign visualisations intuitively correctly without prior instruction. This study succeeded in improving the original design with good user acceptance and a reasonable degree of intuitiveness of the new, revised design. Furthermore, the study identified aspects relevant for the release of Visual-Patient-avatar, such as the requirement for providing at least some training, despite the design’s intuitiveness. The results of this study will guide further research and improvement of the technology. The study provides a link between Visual-Patient-avatar as a scientific concept and as an actual product from a cognitive engineering point of view, and may serve as an example of methods to study the designs of technologies in similar contexts

    Faster Time to Treatment Decision of Viscoelastic Coagulation Test Results through Improved Perception with the Animated Visual Clot: A Multicenter Comparative Eye-Tracking Study

    Full text link
    As the interpretation of viscoelastic coagulation test results remains challenging, we created Visual Clot, an animated blood clot aiming to facilitate raw rotational thromboelastometry (ROTEM) parameters. This study investigated anesthesia personnel's cognitive processing in managing simulated bleeding scenarios using eye-tracking technology. This multicenter, international, computer-based study across five large, central European hospitals included 35 participants with minimal to no prior experience interpreting viscoelastic test results. Using eye-tracking technology and an iPad tagged with quick response codes, we defined the time to treatment decision and the time on screen surface in seconds of correctly solved scenarios as our outcomes. The median time to treatment decision was 52 s for Visual Clot and 205 s for ROTEM (p < 0.0001). The probability of solving the scenario correctly was more than 8 times higher when using Visual Clot than when using ROTEM (Hazard ratio [HR] 8.54, 95% CI from 6.5 to 11.21; p < 0.0001). Out of 194 correctly answered scenarios of participants with the eye-tracker, 154 (79.4%) were solved with Visual Clot and 40 (20.6%) with ROTEM. Participants spent on average 30 s less looking at the screen surface with Visual Clot compared to ROTEM (Coefficient -30.74 s, 95% CI from -39.27 to -22.27; p < 0.0001). For a comparison of the two modalities in terms of information transfer, we calculated the percentage of time on the screen surface of the overall time to treatment decision, which with Visual Clot was 14 percentage points shorter than with ROTEM (Coefficient -14.55, 95% CI from -20.05 to -9.12; p < 0.0001). Visual Clot seems to improve perception and detection of coagulopathies and leads to earlier initiation of the appropriate treatment. In a high-pressure working environment such as the operating and the resuscitation room, correct and timely decisions regarding bleeding management may have a relevant impact on patients' outcomes. Keywords: Visual Clot; avatar; blood coagulation; eye-tracking; point-of-care; rotational thromboelastometry; viscoelastic test; visual perception

    Correction to: The intake of flavonoids, stilbenes, and tyrosols, mainly consumed through red wine and virgin olive oil, is associated with lower carotid and femoral subclinical atherosclerosis and coronary calcium

    Get PDF
    The original version of this article unfortunately contained a mistake. The author’s name Henry Montero-Salazar was incorrectly written as Henry Montero Salazar. © The Author(s) 2022
    • …
    corecore