141 research outputs found

    Renormalization group scale-setting from the action - a road to modified gravity theories

    Get PDF
    The renormalization group (RG) corrected gravitational action in Einstein-Hilbert and other truncations is considered. The running scale of the renormalization group is treated as a scalar field at the level of the action and determined in a scale-setting procedure recently introduced by Koch and Ramirez for the Einstein-Hilbert truncation. The scale-setting procedure is elaborated for other truncations of the gravitational action and applied to several phenomenologically interesting cases. It is shown how the logarithmic dependence of the Newton's coupling on the RG scale leads to exponentially suppressed effective cosmological constant and how the scale-setting in particular RG corrected gravitational theories yields the effective f(R)f(R) modified gravity theories with negative powers of the Ricci scalar RR. The scale-setting at the level of the action at the non-gaussian fixed point in Einstein-Hilbert and more general truncations is shown to lead to universal effective action quadratic in Ricci tensor.Comment: v1: 15 pages; v2: shortened to 10 pages, main results unchanged, published in Class. Quant. Gra

    On analytical solutions of f(R) modified gravity theories in FLRW cosmologies

    Get PDF
    A novel analytical method for f(R) modified theories without matter in Friedmann-Lemaitre-Robertson-Walker spacetimes is introduced. The equation of motion for the scale factor in terms of cosmic time is reduced to the equation for the evolution of the Ricci scalar R with the Hubble parameter H. The solution of equation of motion for actions of the form of power law in Ricci scalar R, is presented with a detailed elaboration of the action quadratic in R. The reverse use of the introduced method is exemplified in finding functional forms f(R) which lead to specified scale factor functions. The analytical solutions are corroborated by numerical calculations with excellent agreement. Possible further applications to the phases of inflationary expansion and late-time acceleration as well as f(R) theories with radiation are outlined.Comment: 16 pages, 6 figures. v2: minor changes, references added. v3: minor changes, more references added. v4: version to appear in IJMPD. v5: DOI and journal reference adde

    Phylostratigraphic tracking of cancer genes suggests a link to the emergence of multicellularity in metazoa

    Get PDF
    Background: Phylostratigraphy is a method used to correlate the evolutionary origin of founder genes (that is, functional founder protein domains) of gene families with particular macroevolutionary transitions. It is based on a model of genome evolution that suggests that the origin of complex phenotypic innovations will be accompanied by the emergence of such founder genes, the descendants of which can still be traced in extant organisms. The origin of multicellularity can be considered to be a macroevolutionary transition, for which new gene functions would have been required. Cancer should be tightly connected to multicellular life since it can be viewed as a malfunction of interaction between cells in a multicellular organism. A phylostratigraphic tracking of the origin of cancer genes should, therefore, also provide insights into the origin of multicellularity. Results: We find two strong peaks of the emergence of cancer related protein domains, one at the time of the origin of the first cell and the other around the time of the evolution of the multicellular metazoan organisms. These peaks correlate with two major classes of cancer genes, the 'caretakers', which are involved in general functions that support genome stability and the 'gatekeepers', which are involved in cellular signalling and growth processes. Interestingly, this phylogenetic succession mirrors the ontogenetic succession of tumour progression, where mutations in caretakers are thought to precede mutations in gatekeepers. Conclusions: A link between multicellularity and formation of cancer has often been predicted. However, this has not so far been explicitly tested. Although we find that a significant number of protein domains involved in cancer predate the origin of multicellularity, the second peak of cancer protein domain emergence is, indeed, connected to a phylogenetic level where multicellular animals have emerged. The fact that we can find a strong and consistent signal for this second peak in the phylostratigraphic map implies that a complex multi-level selection process has driven the transition to multicellularity

    Hubble expansion and structure formation in the "running FLRW model" of the cosmic evolution

    Full text link
    A new class of FLRW cosmological models with time-evolving fundamental parameters should emerge naturally from a description of the expansion of the universe based on the first principles of quantum field theory and string theory. Within this general paradigm, one expects that both the gravitational Newton's coupling, G, and the cosmological term, Lambda, should not be strictly constant but appear rather as smooth functions of the Hubble rate. This scenario ("running FLRW model") predicts, in a natural way, the existence of dynamical dark energy without invoking the participation of extraneous scalar fields. In this paper, we perform a detailed study of these models in the light of the latest cosmological data, which serves to illustrate the phenomenological viability of the new dark energy paradigm as a serious alternative to the traditional scalar field approaches. By performing a joint likelihood analysis of the recent SNIa data, the CMB shift parameter, and the BAOs traced by the Sloan Digital Sky Survey, we put tight constraints on the main cosmological parameters. Furthermore, we derive the theoretically predicted dark-matter halo mass function and the corresponding redshift distribution of cluster-size halos for the "running" models studied. Despite the fact that these models closely reproduce the standard LCDM Hubble expansion, their normalization of the perturbation's power-spectrum varies, imposing, in many cases, a significantly different cluster-size halo redshift distribution. This fact indicates that it should be relatively easy to distinguish between the "running" models and the LCDM cosmology using realistic future X-ray and Sunyaev-Zeldovich cluster surveys.Comment: Version published in JCAP 08 (2011) 007: 1+41 pages, 6 Figures, 1 Table. Typos corrected. Extended discussion on the computation of the linearly extrapolated density threshold above which structures collapse in time-varying vacuum models. One appendix, a few references and one figure adde

    Collection of Epithelial Cells from Rodent Mammary Gland Via Laser Capture Microdissection Yielding High-Quality RNA Suitable for Microarray Analysis

    Get PDF
    Laser capture microdissection (LCM) enables collection of cell populations highly enriched for specific cell types that have the potential of yielding critical information about physiological and pathophysiological processes. One use of cells collected by LCM is for gene expression profiling. Samples intended for transcript analyses should be of the highest quality possible. RNA degradation is an ever-present concern in molecular biological assays, and LCM is no exception. This paper identifies issues related to preparation, collection, and processing in a lipid-rich tissue, rodent mammary gland, in which the epithelial to stromal cell ratio is low and the stromal component is primarily adipocytes, a situation that presents numerous technical challenges for high-quality RNA isolation. Our goal was to improve the procedure so that a greater probe set present call rate would be obtained when isolated RNA was evaluated using Affymetrix microarrays. The results showed that the quality of RNA isolated from epithelial cells of both mammary gland and mammary adenocarcinomas was high with a probe set present call rate of 65% and a high signal-to-noise ratio

    Structural View of a Non Pfam Singleton and Crystal Packing Analysis

    Get PDF
    Comparative genomic analysis has revealed that in each genome a large number of open reading frames have no homologues in other species. Such singleton genes have attracted the attention of biochemists and structural biologists as a potential untapped source of new folds. Cthe_2751 is a 15.8 kDa singleton from an anaerobic, hyperthermophile Clostridium thermocellum. To gain insights into the architecture of the protein and obtain clues about its function, we decided to solve the structure of Cthe_2751.The protein crystallized in 4 different space groups that diffracted X-rays to 2.37 Å (P3(1)21), 2.17 Å (P2(1)2(1)2(1)), 3.01 Å (P4(1)22), and 2.03 Å (C222(1)) resolution, respectively. Crystal packing analysis revealed that the 3-D packing of Cthe_2751 dimers in P4(1)22 and C222(1) is similar with only a rotational difference of 2.69° around the C axes. A new method developed to quantify the differences in packing of dimers in crystals from different space groups corroborated the findings of crystal packing analysis. Cthe_2751 is an all α-helical protein with a central hydrophobic core providing thermal stability via π:cation and π: π interactions. A ProFunc analysis retrieved a very low match with a splicing endonuclease, suggesting a role for the protein in the processing of nucleic acids.Non-Pfam singleton Cthe_2751 folds into a known all α-helical fold. The structure has increased sequence coverage of non-Pfam proteins such that more protein sequences can be amenable to modelling. Our work on crystal packing analysis provides a new method to analyze dimers of the protein crystallized in different space groups. The utility of such an analysis can be expanded to oligomeric structures of other proteins, especially receptors and signaling molecules, many of which are known to function as oligomers

    Laser capture microdissection in forensic research: a review

    Get PDF
    In forensic sciences, short tandem repeat (STR) analysis has become the prime tool for DNA-based identification of the donor(s) of biological stains and/or traces. Many traces, however, contain cells and, hence, DNA, from more than a single individual, giving rise to mixed genotypes and the subsequent difficulties in interpreting the results. An even more challenging situation occurs when cells of a victim are much more abundant than the cells of the perpetrator. Therefore, the forensic community seeks to improve cell-separation methods in order to generate single-donor cell populations from a mixed trace in order to facilitate DNA typing and identification. Laser capture microdissection (LCM) offers a valuable tool for precise separation of specific cells. This review summarises all possible forensic applications of LCM, gives an overview of the staining and detection options, including automated detection and retrieval of cells of interest, and reviews the DNA extraction protocols compatible with LCM of cells from forensic samples

    Structure and Age Jointly Influence Rates of Protein Evolution

    Get PDF
    What factors determine a protein's rate of evolution are actively debated. Especially unclear is the relative role of intrinsic factors of present-day proteins versus historical factors such as protein age. Here we study the interplay of structural properties and evolutionary age, as determinants of protein evolutionary rate. We use a large set of one-to-one orthologs between human and mouse proteins, with mapped PDB structures. We report that previously observed structural correlations also hold within each age group – including relationships between solvent accessibility, designabililty, and evolutionary rates. However, age also plays a crucial role: age modulates the relationship between solvent accessibility and rate. Additionally, younger proteins, despite being less designable, tend to evolve faster than older proteins. We show that previously reported relationships between age and rate cannot be explained by structural biases among age groups. Finally, we introduce a knowledge-based potential function to study the stability of proteins through large-scale computation. We find that older proteins are more stable for their native structure, and more robust to mutations, than younger ones. Our results underscore that several determinants, both intrinsic and historical, can interact to determine rates of protein evolution

    Cross-Sample Validation Provides Enhanced Proteome Coverage in Rat Vocal Fold Mucosa

    Get PDF
    The vocal fold mucosa is a biomechanically unique tissue comprised of a densely cellular epithelium, superficial to an extracellular matrix (ECM)-rich lamina propria. Such ECM-rich tissues are challenging to analyze using proteomic assays, primarily due to extensive crosslinking and glycosylation of the majority of high Mr ECM proteins. In this study, we implemented an LC-MS/MS-based strategy to characterize the rat vocal fold mucosa proteome. Our sample preparation protocol successfully solubilized both proteins and certain high Mr glycoconjugates and resulted in the identification of hundreds of mucosal proteins. A straightforward approach to the treatment of protein identifications attributed to single peptide hits allowed the retention of potentially important low abundance identifications (validated by a cross-sample match and de novo interpretation of relevant spectra) while still eliminating potentially spurious identifications (global single peptide hits with no cross-sample match). The resulting vocal fold mucosa proteome was characterized by a wide range of cellular and extracellular proteins spanning 12 functional categories

    Protein coalitions in a core mammalian biochemical network linked by rapidly evolving proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cellular ATP levels are generated by glucose-stimulated mitochondrial metabolism and determine metabolic responses, such as glucose-stimulated insulin secretion (GSIS) from the β-cells of pancreatic islets. We describe an analysis of the evolutionary processes affecting the core enzymes involved in glucose-stimulated insulin secretion in mammals. The proteins involved in this system belong to ancient enzymatic pathways: glycolysis, the TCA cycle and oxidative phosphorylation.</p> <p>Results</p> <p>We identify two sets of proteins, or protein coalitions, in this group of 77 enzymes with distinct evolutionary patterns. Members of the glycolysis, TCA cycle, metabolite transport, pyruvate and NADH shuttles have low rates of protein sequence evolution, as inferred from a human-mouse comparison, and relatively high rates of evolutionary gene duplication. Respiratory chain and glutathione pathway proteins evolve faster, exhibiting lower rates of gene duplication. A small number of proteins in the system evolve significantly faster than co-pathway members and may serve as rapidly evolving adapters, linking groups of co-evolving genes.</p> <p>Conclusions</p> <p>Our results provide insights into the evolution of the involved proteins. We find evidence for two coalitions of proteins and the role of co-adaptation in protein evolution is identified and could be used in future research within a functional context.</p
    corecore