84 research outputs found

    Impact of the storm Alex on water exchanges between the Roya River and its alluvial aquifer

    Get PDF
    The alluvial aquifer of the transnational Roya River watershed is an important water resource for drinking water supply. Through successive European projects, a monitoring network has been implemented over the alluvial plain to improve the understanding of the functioning of this aquifer. For instance, studies highlighted the predominant role of surface water in the recharge of the aquifer. Following the storm Alex and the resulting exceptional flood event in the Roya valley in October 2020, a general decrease of the piezometric levels was observed in the alluvial aquifer. Changes in the river morphology and in the granulometry of the hyporheic zone have impacted surface water – groundwater exchanges and reduced the aquifer recharge.</p

    NOMAD spectrometer on the ExoMars trace gas orbiter mission: part 2—design, manufacturing, and testing of the ultraviolet and visible channel

    Get PDF
    NOMAD is a spectrometer suite on board the ESA/Roscosmos ExoMars Trace Gas Orbiter, which launched in March 2016. NOMAD consists of two infrared channels and one ultraviolet and visible channel, allowing the instrument to perform observations quasi-constantly, by taking nadir measurements at the day- and night-side, and during solar occultations. Here, in part 2 of a linked study, we describe the design, manufacturing, and testing of the ultraviolet and visible spectrometer channel called UVIS. We focus upon the optical design and working principle where two telescopes are coupled to a single grating spectrometer using a selector mechanism

    Geological and Hydrogeological Characterization of Springs in a DSGSD Context (Rodoretto Valley &#8211; NW Italian Alps)

    Get PDF
    As continuous groundwater monitoring in the upper sector of Rodoretto Valley (Germanasca Valley, Italian Western Alps) is hampered by logistical problem of data collection during winter and spring months, the only tools currently available to derive hydrogeological information are non-continuous and non-long-term dataset of spring discharge (Q), temperature (T) and electrical conductivity (EC). In order to quantity aquifer groundwater reserve, available Q dataset of a small mountain spring (Spring 1 CB) was investigated by applying the analytical solutions developed by Boussinesq (J Math Pure Appl 10:5–78, 1904) and Maillet (Essais dı’hydraulique souterraine et fluviale, vol 1. Herman et Cie, Paris, 1905); T and EC datasets were also used to provide qualitative information about the nature of the aquifer that supplies the spring. The outcomes of the elaborations highlighted the limits of applicability of these methods in the presence of a non-continuous Q dataset: both Boussinesq (J Math Pure Appl 10:5–78, 1904) and Maillet (Essais dı’hydraulique souterraine et fluviale, vol 1. Herman et Cie, Paris, 1905) estimated that discharge values as a function of recession time were found to be consistently lower than the available discharge ones and the estimated groundwater volumes stored over time above the spring level turned out to be underestimated. Continuous (hourly value) and long-term Q, EC and T values are, therefore, needful to correctly quantify and to make a proper management of groundwater resources in mountain areas

    Managed groundwater recharge at the farm scale in pre-Saharan Morocco

    Get PDF
    The oases of the pre-Saharan basin of Wadi Ferkla in southeastern Morocco receives low and erratic rainfall (annual average of 141 mm and inter-annual standard deviation of 70 mm). From the 1980s, surface water and groundwater are increasingly used due to the expansion of irrigation, mainly along two wadis, namely Wadis Ferkla and Satt originating in the High-Atlas and the Anti-Atlas Mountains, respectively. Their flows reach the Ferkla's irrigated perimeters only when the volume of the flood events exceed upstream evaporation, withdrawals and riverbed's infiltration. Nowadays, these irrigated perimeters exert significant pressure on groundwater resources, through numerous drillings equipped with pumping systems, most of them being powered by solar energy. This increasing water demand situation incentivizes individual farmers to design and implement innovative techniques to increase water access for their farms. For instance, the spreading of floodwaters – an ancestral and collective irrigation practice in traditional oases – is currently being modernized by individual farmers. The new technique consists in partially diverting flood flows into earthen basins. The stored water either infiltrates to recharge local aquifers, or is pumped for flood irrigation of date palms. An experimental protocol was set up to characterize groundwater recharge below one of these on-farm basins equipped with a recharge well. Barometric probes were installed in the basin, in the recharge well and in neighboring boreholes to automatically monitor water levels. A topographic survey of the monitoring points and of the basin aimed at deriving piezometric levels from water levels measurements and estimating the height-surface-volume curves of the basin. After 7 months of continuous monitoring, 3 flood events were recorded. The establishment of the basin water balance at a fine time-resolution allowed estimating its different components including the infiltration rate influencing groundwater recharge. An analytical modeling of this process was developed to assess its effect on groundwater level variations. This approach aims to contribute to a broader reflection on securing water management in this fragile oasis ecosystem.</p

    Socio-economic assessement of farmers' vulnerability as water users subject to global change stressors in the hard rock area of southern India. The SHIVA ANR project

    Get PDF
    International audienceDemand for vulnerability assessments is growing in policy-making circles, to support the choice of appropriate measures and policies to reduce the vulnerability of water users and resources. Through the SHIVA ANR project, we are seeking a method to assess and map the vulnerability of farmers in southern India to both climate and socioeconomic changes, and secondly, to assess the costs and benefits associated with trends farmers' vulnerability in the medium and long-term. The project is focusing on southern India 's hard rock area, as in the geological context, both surface and ground water resources are naturally limited. We are also focusing on farming populations as these are the main water users in the area and rely exclusively on groundwater. The area covers southern India's semi-arid zone, where the rainfall gradient ranges from 600 mm to 1100 mm. Vulnerability is expected to vary according to local climatic conditions but also the socioeconomic characteristics of farming households. The SHIVA research team has been divided into six thematic groups in order to address the different scientific issues : downscaling the regional climate scenario, farm area projections, vulnerability assessments and quantification, vulnerability mapping, hydrological modelling and upscaling, and vulnerability impact assessements. Our approach is multidisciplinary to cater for for numerous inherent themes, and integrated to cater for vulnerability as a dynamic and multidimensional concept. The project 's first results after 10 months of research are presented below

    Estimativa de parâmetros de aquíferos através do coeficiente de recessão em áreas de embasamento cristalino de Minas Gerais

    Get PDF
    O coeficiente de recessão (&#945;) indica a taxa de produção do fluxo de base, que representa a porção da vazão de um rio mantida pela restituição de águas subterrâneas. Ele pode ser obtido através da análise de hidrogramas. Esse coeficiente possibilita o cálculo de parâmetros importantes, como a transmissividade de aquíferos, as reservas renováveis de água subterrânea e as vazões mínimas em canais de drenagem, que, usualmente, são obtidas através de outros índices hidrológicos, como o Q7,10, muito empregado na gestão de recursos hídricos superficiais. As bacias estudadas estão localizadas na porção centro-sul de Minas Gerais, em regiões de rochas granito-gnássicas, sob vegetação, clima e uso e ocupação semelhantes. Os resultados obtidos, no estudo, foram satisfatórios, indicando os métodos de determinação de coeficiente de recessão como promissores para se caracterizar a produção de água subterrânea em bacias hidrográficas do embasamento cristalino. A restituição de águas subterrâneas para os sistemas de drenagem é maior nas áreas de relevo mais suave, indicando que estas constituem as melhores áreas de recarga

    Use of hydraulic tests at different scales to characterize fracture network properties in the weathered‐fractured layer of a hard rock aquifer

    No full text
    International audienceThe hydrodynamic properties of the weathered-fractured layer of a hard-rock pilot watershed in a granitic terrain are characterized using hydraulic tests at different scales. The interpretation of numerous slug tests leads to characterize the statistical distribution of local permeabilities in the wells. The application of flowmeter profiles during injection tests determines the vertical distribution of conductive fracture zones and their permeabilities. It appears that the extension of the most conductive part of the weathered-fractured layer is limited down to 35 meters depth. The partition of drainage porosity between blocks (90%) and fractures (10%) is determined thanks to the interpretation of pumping tests using a double porosity model. The application of anisotropic and single fracture analytical solutions on pumping test data allows to determine, respectively, the degree of anisotropy of permeability ( ) and the radius (4 to 16 meters) of the horizontal conductive fractures crossed by the wells. Two different scales of fractures networks are identified: the primary fracture network (PFN), which affects the matrix on a decimeter scale by contributing to an increase in the permeability and storage capacity of the blocks, and the secondary fracture network (SFN), which affects the blocks at the borehole scale. SFN is composed of two sets of fractures. The main set of horizontal fractures is responsible for the sub-horizontal permeability of the weathered-fractured layer. A second set of less permeable sub-vertical fractures insures the connectivity of the aquifer at the borehole scale. The good connectivity of fractures networks is shown by fractional dimension flow solutions. The absence of scale effect in the study area suggests that the hydraulic conductivity at the borehole scale is laterally homogeneous. Finally, the analysis and synthesis of the hydrodynamic properties allow to propose a comprehensive hydrodynamic model of the fractured-weathered layer. Many geological and hydrogeological indicators suggest that a continuous and laterally homogeneous weathering process is responsible for the origin of the fractures and permeability encountered in the aquifer. These results confirm the major role played by weathering in the origin of fractures and on resulting hydrodynamic parameters in the shallow part of hard-rock aquifers

    Comparative analysis between analytical approximations and numerical solutions describing recession flow in unconfined hillslope aquifers

    Full text link
    Recession flow of aquifers from a hillslope can be described by the non-linear Boussinesq equation. Under strong assumptions and for specific conceptual formulations, different authors derived analytical approximations or linearized versions to this partial differential equation. A comparative analysis between some analytical approximations of the Boussinesq equation and the numerical solution of the recession flow of an unconfined homogeneous aquifer (horizontal, inclined and concave aquifer floor) was carried out. The objective was to define the range where the analytical solutions approximate the numerical solution. The latter was considered in this study as the reference method, because it requires fewer assumptions. From the considered analytical approximations, exponential decay relationships were found to be mainly valid for fine domain materials when horizontal, mild slopes (less than 2%) and concave aquifer floors were considered, but failed to reproduce coarse aquifer numerical model outflows, in contrast to the quadratic decay relationship, which better reproduce outflows in such domains. On the basis of the comparative analysis, it has been found that recession flows obtained with the considered analytical approximations yield similar values only for certain ranges of aquifer properties and geometries
    corecore