880 research outputs found

    A trap-based pulsed positron beam optimised for positronium laser spectroscopy

    Get PDF
    We describe a pulsed positron beam that is optimised for positronium (Ps) laser-spectroscopy experiments. The system is based on a two-stage Surko-type buffer gas trap that produces 4 ns wide pulses containing up to 5 × 105 positrons at a rate of 0.5-10 Hz. By implanting positrons from the trap into a suitable target material, a dilute positronium gas with an initial density of the order of 107 cm−3 is created in vacuum. This is then probed with pulsed (ns) laser systems, where various Ps-laser interactions have been observed via changes in Ps annihilation rates using a fast gamma ray detector. We demonstrate the capabilities of the apparatus and detection methodology via the observation of Rydberg positronium atoms with principal quantum numbers ranging from 11 to 22 and the Stark broadening of the n = 2 → 11 transition in electric fields

    Multi-source self-calibration: Unveiling the microJy population of compact radio sources

    Get PDF
    Context. Very Long Baseline Interferometry (VLBI) data are extremely sensitive to the phase stability of the VLBI array. This is especially important when we reach {\mu}Jy r.m.s. sensitivities. Calibration using standard phase referencing techniques is often used to improve the phase stability of VLBI data but the results are often not optimal. This is evident in blank fields that do not have in-beam calibrators. Aims. We present a calibration algorithm termed Multi-Source Self-Calibration (MSSC) which can be used after standard phase referencing on wide-field VLBI observations. This is tested on a 1.6 GHz wide-field VLBI data set of the Hubble Deep Field-North and the Hubble Flanking Fields. Methods. MSSC uses multiple target sources detected in the field via standard phase referencing techniques and modifies the visibili- ties so that each data set approximates to a point source. These are combined to increase the signal to noise and permit self-calibration. In principle, this should allow residual phase changes caused by the troposphere and ionosphere to be corrected. By means of faceting, the technique can also be used for direction dependent calibration. Results. Phase corrections, derived using MSSC, were applied to a wide-field VLBI data set of the HDF-N comprising of 699 phase centres. MSSC was found to perform considerably better than standard phase referencing and single source self-calibration. All detected sources exhibited dramatic improvements in dynamic range. Using MSSC, one source reached the detection threshold taking the total detected sources to twenty. 60% of these sources can now be imaged with uniform weighting compared to just 45% with standard phase referencing. The Parseltongue code which implements MSSC has been released and made publicly available to the astronomical community (https://github.com/jradcliffe5/multi_self_cal).Comment: 7 pages, 4 figures, accepted to A&

    Detection of fast radio transients with multiple stations: a case study using the Very Long Baseline Array

    Full text link
    Recent investigations reveal an important new class of transient radio phenomena that occur on sub-millisecond timescales. Often transient surveys' data volumes are too large to archive exhaustively. Instead, an on-line automatic system must excise impulsive interference and detect candidate events in real-time. This work presents a case study using data from multiple geographically distributed stations to perform simultaneous interference excision and transient detection. We present several algorithms that incorporate dedispersed data from multiple sites, and report experiments with a commensal real-time transient detection system on the Very Long Baseline Array (VLBA). We test the system using observations of pulsar B0329+54. The multiple-station algorithms enhanced sensitivity for detection of individual pulses. These strategies could improve detection performance for a future generation of geographically distributed arrays such as the Australian Square Kilometre Array Pathfinder and the Square Kilometre Array.Comment: 12 pages, 14 figures. Accepted for Ap

    Formation of positron-atom bound states in collisions between Rydberg Ps and neutral atoms

    Get PDF
    Predicted twenty years ago, positron binding to neutral atoms has not yet been observed experimentally. A new scheme is proposed to detect positron-atom bound states by colliding Rydberg positronium (Ps) with neutral atoms. Estimates of the charge-transfer reaction cross section are obtained using the first Born approximation for a selection of neutral atom targets and a wide range of incident Ps energies and principal quantum numbers. We also estimate the corresponding Ps ionization cross section. The accuracy of the calculations is tested by comparison with earlier predictions for Ps charge transfer in collisions with hydrogen and antihydrogen. We describe an existing Rydberg Ps beam suitable for producing positron-atom bound states and estimate signal rates based on the calculated cross sections and realistic experimental parameters. We conclude that the proposed methodology is capable of producing such states and of testing theoretical predictions of their binding energies.Comment: 19 pages, 11 figures, submitted to Phys. Rev.

    Automatic Detection of Laryngeal Pathology on Sustained Vowels Using Short-Term Cepstral Parameters: Analysis of Performance and Theoretical Justification

    Get PDF
    The majority of speech signal analysis procedures for automatic detection of laryngeal pathologies mainly rely on parameters extracted from time domain processing. Moreover, calculation of these parameters often requires prior pitch period estimation; therefore, their validity heavily depends on the robustness of pitch detection. Within this paper, an alternative approach based on cepstral- domain processing is presented which has the advantage of not requiring pitch estimation, thus providing a gain in both simplicity and robustness. While the proposed scheme is similar to solutions based on Mel-frequency cepstral parameters, already present in literature, it has an easier physical interpretation while achieving similar performance standards

    VLA Observations of Single Pulses from the Galactic Center Magnetar

    Full text link
    We present the results of a 7-12 GHz phased-array study of the Galactic center magnetar J1745-2900 with the Karl G. Jansky Very Large Array (VLA). Using data from two 6.5 hour observations from September 2014, we find that the average profile is comprised of several distinct components at these epochs and is stable over ∼\simday timescales and ∼\simGHz frequencies. Comparison with additional phased VLA data at 8.7 GHz shows significant profile changes on longer timescales. The average profile at 7-12 GHz is dominated by the jitter of relatively narrow pulses. The pulses in each of the four main profile components seen in September 2014 are uncorrelated in phase and amplitude, though there is a small but significant correlation in the occurrence of pulses in two of the profile components. Using the brightest pulses, we measure the dispersion and scattering parameters of J1745-2900. A joint fit of 38 pulses gives a 10 GHz pulse broadening time of τsc,10=0.09±0.03 ms\tau_{\rm sc, 10} = 0.09 \pm 0.03~\rm ms and a dispersion measure of DM=1760−1.3+2.4 pc cm−3{\rm DM} = 1760^{+2.4}_{-1.3}~{\rm pc~cm}^{-3}. Both of these results are consistent with previous measurements, which suggests that the scattering and dispersion measure of J1745-2900 may be stable on timescales of several years.Comment: 20 pages, 10 figures, published in Ap

    Nowhere to Hide: Radio-faint AGN in the GOODS-N field. I. Initial catalogue and radio properties

    Get PDF
    (Abridged) Conventional radio surveys of deep fields ordinarily have arc-second scale resolutions often insufficient to reliably separate radio emission in distant galaxies originating from star-formation and AGN-related activity. Very long baseline interferometry (VLBI) can offer a solution by identifying only the most compact radio emitting regions in galaxies at cosmological distances where the high brightness temperatures (in excess of 10510^5 K) can only be reliably attributed to AGN activity. We present the first in a series of papers exploring the faint compact radio population using a new wide-field VLBI survey of the GOODS-N field. The unparalleled sensitivity of the European VLBI Network (EVN) will probe a luminosity range rarely seen in deep wide-field VLBI observations, thus providing insights into the role of AGN to radio luminosities of the order 1022 W Hz−110^{22}~\mathrm{W\,Hz^{-1}} across cosmic time. The newest VLBI techniques are used to completely cover an entire 7'.5 radius area to milliarcsecond resolutions, while bright radio sources (S>0.1S > 0.1 mJy) are targeted up to 25 arcmin from the pointing centre. Multi-source self-calibration, and a primary beam model for the EVN array are used to correct for residual phase errors and primary beam attenuation respectively. This paper presents the largest catalogue of VLBI detected sources in GOODS-N comprising of 31 compact radio sources across a redshift range of 0.11-3.44, almost three times more than previous VLBI surveys in this field. We provide a machine-readable catalogue and introduce the radio properties of the detected sources using complementary data from the e-MERLIN Galaxy Evolution survey (eMERGE).Comment: 15 pages, 8 figures, accepted in A&A. Machine-readable table available upon reques

    Locating the intense interstellar scattering towards the inner Galaxy

    Full text link
    We use VLBA+VLA observations to measure the sizes of the scatter-broadened images of 6 of the most heavily scattered known pulsars: 3 within the Galactic Centre (GC) and 3 elsewhere in the inner Galactic plane. By combining the measured sizes with temporal pulse broadening data from the literature and using the thin-screen approximation, we locate the scattering medium along the line of sight to these 6 pulsars. At least two scattering screens are needed to explain the observations of the GC sample. We show that the screen inferred by previous observations of SGR J1745-2900 and Sgr A*, which must be located far from the GC, falls off in strength on scales < 0.2 degree. A second scattering component closer to (< 2 kpc) or even (tentatively) within (< 700 pc) the GC produces most or all of the temporal broadening observed in the other GC pulsars. Outside the GC, the scattering locations for all three pulsars are ~2 kpc from Earth, consistent with the distance of the Carina-Sagittarius or Scutum spiral arm. For each object the 3D scattering origin coincides with a known HII region (and in one case also a supernova remnant), suggesting that such objects preferentially cause the intense interstellar scattering seen towards the Galactic plane. We show that the HII regions should contribute > 25% of the total dispersion measure (DM) towards these pulsars, and calculate reduced DM distances. Those distances for other pulsars lying behind HII regions may be similarly overestimated.Comment: 16 pages, 10 figures, MNRAS, in pres

    Microarcsecond VLBI pulsar astrometry with PSRπ\pi II. parallax distances for 57 pulsars

    Full text link
    We present the results of PSRπ\pi, a large astrometric project targeting radio pulsars using the Very Long Baseline Array (VLBA). From our astrometric database of 60 pulsars, we have obtained parallax-based distance measurements for all but 3, with a parallax precision of typically 40 μ\muas and approaching 10 μ\muas in the best cases. Our full sample doubles the number of radio pulsars with a reliable (≳\gtrsim5σ\sigma) model-independent distance constraint. Importantly, many of the newly measured pulsars are well outside the solar neighbourhood, and so PSRπ\pi brings a near-tenfold increase in the number of pulsars with a reliable model-independent distance at d>2d>2 kpc. Using our sample along with previously published results, we show that even the most recent models of the Galactic electron density distribution model contain significant shortcomings, particularly at high Galactic latitudes. When comparing our results to pulsar timing, two of the four millisecond pulsars in our sample exhibit significant discrepancies in the estimates of proper motion obtained by at least one pulsar timing array. With additional VLBI observations to improve the absolute positional accuracy of our reference sources and an expansion of the number of millisecond pulsars, we will be able to extend the comparison of proper motion discrepancies to a larger sample of pulsar reference positions, which will provide a much more sensitive test of the applicability of the solar system ephemerides used for pulsar timing. Finally, we use our large sample to estimate the typical accuracy attainable for differential astrometry with the VLBA when observing pulsars, showing that for sufficiently bright targets observed 8 times over 18 months, a parallax uncertainty of 4 μ\muas per arcminute of separation between the pulsar and calibrator can be expected.Comment: updated to version accepted by ApJ: 30 pages, 20 figures, 9 table
    • …
    corecore