3,641 research outputs found
Andreev-like reflections with cold atoms
We propose a setup in which Andreev-like reflections predicted for 1D transport systems could be observed time dependently using cold atoms in a 1D optical lattice. Using time-dependent density matrix renormalization group methods we analyze the wave packet dynamics as a density excitation propagates across a boundary in the interaction strength. These phenomena exhibit good correspondence with predictions from Luttinger liquid models and could be observed in current experiments in the context of the Bose-Hubbard model
Entanglement growth in quench dynamics with variable range interactions
Studying entanglement growth in quantum dynamics provides both insight into
the underlying microscopic processes and information about the complexity of
the quantum states, which is related to the efficiency of simulations on
classical computers. Recently, experiments with trapped ions, polar molecules,
and Rydberg excitations have provided new opportunities to observe dynamics
with long-range interactions. We explore nonequilibrium coherent dynamics after
a quantum quench in such systems, identifying qualitatively different behavior
as the exponent of algebraically decaying spin-spin interactions in a
transverse Ising chain is varied. Computing the build-up of bipartite
entanglement as well as mutual information between distant spins, we identify
linear growth of entanglement entropy corresponding to propagation of
quasiparticles for shorter range interactions, with the maximum rate of growth
occurring when the Hamiltonian parameters match those for the quantum phase
transition. Counter-intuitively, the growth of bipartite entanglement for
long-range interactions is only logarithmic for most regimes, i.e.,
substantially slower than for shorter range interactions. Experiments with
trapped ions allow for the realization of this system with a tunable
interaction range, and we show that the different phenomena are robust for
finite system sizes and in the presence of noise. These results can act as a
direct guide for the generation of large-scale entanglement in such
experiments, towards a regime where the entanglement growth can render existing
classical simulations inefficient.Comment: 17 pages, 7 figure
Classical simulation of quantum many-body systems with a tree tensor network
We show how to efficiently simulate a quantum many-body system with tree
structure when its entanglement is bounded for any bipartite split along an
edge of the tree. This is achieved by expanding the {\em time-evolving block
decimation} simulation algorithm for time evolution from a one dimensional
lattice to a tree graph, while replacing a {\em matrix product state} with a
{\em tree tensor network}. As an application, we show that any one-way quantum
computation on a tree graph can be efficiently simulated with a classical
computer.Comment: 4 pages,7 figure
Investigations into the Sarcomeric Protein and Ca2+-Regulation Abnormalities Underlying Hypertrophic Cardiomyopathy in Cats (Felix catus).
Hypertrophic cardiomyopathy (HCM) is the most common single gene inherited cardiomyopathy. In cats (Felix catus) HCM is even more prevalent and affects 16% of the outbred population and up to 26% in pedigree breeds such as Maine Coon and Ragdoll. Homozygous MYBPC3 mutations have been identified in these breeds but the mutations in other cats are unknown. At the clinical and physiological level feline HCM is closely analogous to human HCM but little is known about the primary causative mechanism. Most identified HCM causing mutations are in the genes coding for proteins of the sarcomere. We therefore investigated contractile and regulatory proteins in left ventricular tissue from 25 cats, 18 diagnosed with HCM, including a Ragdoll cat with a homozygous MYBPC3 R820W, and 7 non-HCM cats in comparison with human HCM (from septal myectomy) and donor heart tissue. Myofibrillar protein expression was normal except that we observed 20–44% MyBP-C haploinsufficiency in 5 of the HCM cats. Troponin extracted from 8 HCM and 5 non-HCM cat hearts was incorporated into thin filaments and studied by in vitro motility assay. All HCM cat hearts had a higher (2.06 ± 0.13 fold) Ca2+-sensitivity than non-HCM cats and, in all the HCM cats, Ca2+-sensitivity was not modulated by troponin I phosphorylation. We were able to restore modulation of Ca2+-sensitivity by replacing troponin T with wild-type protein or by adding 100 μM Epigallocatechin 3-gallate (EGCG). These fundamental regulatory characteristics closely mimic those seen in human HCM indicating a common molecular mechanism that is independent of the causative mutation. Thus, the HCM cat is a potentially useful large animal model
Gateway Modeling and Simulation Plan
This plan institutes direction across the Gateway Program and the Element Projects to ensure that Cross Program M&S are produced in a manner that (1) generate the artifacts required for NASA-STD-7009 compliance, (2) ensures interoperability of M&S exchanged and integrated across the program and, (3) drives integrated development efforts to provide cross-domain integrated simulation of the Gateway elements, space environment, and operational scenarios. This direction is flowed down via contractual enforcement to prime contractors and includes both the GMS requirements specified in this plan and the NASASTD- 7009 derived requirements necessary for compliance. Grounding principles for management of Gateway Models and Simulations (M&S) are derived from the Columbia Accident Investigation Board (CAIB) report and the Diaz team report, A Renewed Commitment to Excellence. As an outcome of these reports, and in response to Action 4 of the Diaz team report, the NASA Standard for Models and Simulations, NASA-STD-7009 was developed. The standard establishes M&S requirements for development and use activities to ensure proper capture and communication of M&S pedigree and credibility information to Gateway program decision makers. Through the course of the Gateway program life cycle M&S will be heavily relied upon to conduct analysis, test products, support operations activities, enable informed decision making and ultimately to certify the Gateway with an acceptable level of risk to crew and mission. To reduce risk associated with M&S influenced decisions, this plan applies the NASA-STD-7009 requirements to produce the artifacts that support credibility assessments and ensure the information is communicated to program management
FtsZ does not initiate membrane constriction at the onset of division.
The source of constriction required for division of a bacterial cell remains enigmatic. FtsZ is widely believed to be a key player, because in vitro experiments indicate that it can deform liposomes when membrane tethered. However in vivo evidence for such a role has remained elusive as it has been challenging to distinguish the contribution of FtsZ from that of peptidoglycan-ingrowth. To differentiate between these two possibilities we studied the early stages of division in Escherichia coli, when FtsZ is present at the division site but peptidoglycan synthesizing enzymes such as FtsI and FtsN are not. Our approach was to use correlative cryo-fluorescence and cryo-electron microscopy (cryo-CLEM) to monitor the localization of fluorescently labeled FtsZ, FtsI or FtsN correlated with the septal ultra-structural geometry in the same cell. We noted that the presence of FtsZ at the division septum is not sufficient to deform membranes. This observation suggests that, although FtsZ can provide a constrictive force, the force is not substantial at the onset of division. Conversely, the presence of FtsN always correlated with membrane invagination, indicating that allosteric activation of peptidoglycan ingrowth is the trigger for constriction of the cell envelope during cell division in E. coli
A Single Atom Transistor in a 1D Optical Lattice
We propose a scheme utilising a quantum interference phenomenon to switch the
transport of atoms in a 1D optical lattice through a site containing an
impurity atom. The impurity represents a qubit which in one spin state is
transparent to the probe atoms, but in the other acts as a single atom mirror.
This allows a single-shot quantum non-demolition measurement of the qubit spin.Comment: RevTeX 4, 5 Figures, 4 Page
Rescuing Economics From The Discipline: The Green Learning Community
Undergraduate economics is poised for reform because of readily available data and multimedia content. However, we argue that deep reform is needed to teach complex contemporary problems. This requires including institutional and historical content and restructuring the classroom to facilitate interdisciplinary pedagogy. Using Colander’s (2006) analysis of reform as a starting point, we review the economics literature to identify alternative approaches and interdisciplinary pedagogy. The Green Learning Community is introduced as an intentional approach that links economics, humanities and environmental studies and provides first-year students adequate time to study, reflect upon, and internalize economic assumptions, models, values, and interdisciplinary insights
- …