98 research outputs found
Gossamer roadmap technology reference study for a solar polar mission
A technology reference study for a solar polar mission is presented. The study uses novel analytical methods to quantify the mission design space including the required sail performance to achieve a given solar polar observation angle within a given timeframe and thus to derive mass allocations for the remaining spacecraft sub-systems, that is excluding the solar sail sub-system. A parametric, bottom-up, system mass budget analysis is then used to establish the required sail technology to deliver a range of science payloads, and to establish where such payloads can be delivered to within a given timeframe. It is found that a solar polar mission requires a solar sail of side-length 100 â 125 m to deliver a âsufficient valueâ minimum science payload, and that a 2. 5ÎŒm sail film substrate is typically required, however the design is much less sensitive to the boom specific mass
Technology requirements of exploration beyond Neptune by solar sail propulsion
This paper provides a set of requirements for the technology development of a solar sail propelled Interstellar Heliopause Probe mission. The mission is placed in the context of other outer solar systems missions, ranging from a Kuiper Belt mission through to an Oort cloud mission. Mission requirements are defined and a detailed parametric trajectory analysis and launch date scan performed. Through analysis of the complete mission trade space a set of critical technology development requirements are identified which include an advanced lightweight composite High-Gain Antenna, a high-efficiency Ka-band travelling-wave tube amplifier and a radioisotope thermoelectric generator with power density of approximately 12 W/kg. It is also shown that the Interstellar Heliopause Probe mission necessitates the use of a spinning sail, limiting the direct application of current hardware development activities. A Kuiper Belt mission is then considered as a pre-curser to the Interstellar Heliopause Probe, while it is also shown through study of an Oort cloud mission that the Interstellar Heliopause Probe mission is the likely end-goal of any future solar sail technology development program. As such, the technology requirements identified to enable the Interstellar Heliopause Probe must be enabled through all prior missions, with each mission acting as an enabling facilitator towards the next
Natural and sail-displaced doubly-symmetric Lagrange point orbits for polar coverage
This paper proposes the use of doubly-symmetric, eight-shaped orbits in the circular restricted three-body problem for continuous coverage of the high-latitude regions of the Earth. These orbits, for a range of amplitudes, spend a large fraction of their period above either pole of the Earth. It is shown that they complement Sun-synchronous polar and highly eccentric Molniya orbits, and present a possible alternative to low thrust pole-sitter orbits. Both natural and solar-sail displaced orbits are considered. Continuation methods are described and used to generate families of these orbits. Starting from ballistic orbits, other families are created either by increasing the sail lightness number, varying the period or changing the sail attitude. Some representative orbits are then chosen to demonstrate the visibility of high-latitude regions throughout the year. A stability analysis is also performed, revealing that the orbits are unstable: it is found that for particular orbits, a solar sail can reduce their instability. A preliminary design of a linear quadratic regulator is presented as a solution to stabilize the system by using the solar sail only. Finally, invariant manifolds are exploited to identify orbits that present the opportunity of a ballistic transfer directly from low Earth orbit
Feasibility of an In-Situ Microbial Decontamination of an Ice-Melting Probe
Autonomous robotic systems for penetrating thick ice shells with simultaneous collecting of scientific data are very promising devices in both terrestrial (glacier, climate research) and extra-terrestrial applications. Technical challenges in development of such systems are numerous and include 3D-navigation, an appropriate energy source, motion control, etc. Not less important is the problem of forward contamination of the pristine glacial environments with microorganisms and biomolecules from the surface of the probe. This study was devoted to establishing a laboratory model for microbial contamination of a newlyconstructed
ice-melting probe called IceMole and to analyse the viability and amount of the contaminating microorganisms as a function of distance. The used bacterial strains were Bacillus subtilis (ATCC 6051) and Escherichia coli (ATCC 11775). The main objective was development of an efficient and reliable in-situ decontamination method of the melting probe. Therefore, several chemical substances were tested in respect of their efficacy to eliminate bacteria on the surface of the melting probe at low temperature (0 - 5 °C) and at continuous dilution by melted water. Our study has shown that at least 99.9% decontamination of the IceMole can be successfully achieved by the injection of 30% (v/v) hydrogen peroxide and 3% (v/v) sodium hypochlorite into the drilling site. We were able to reproduce this result in both time-dependent and depth-dependent experiments. The sufficient amount of 30% (v/v) H2O2 or 3% (v/v) NaClO has been found to be approximately 18 L per cmÂČ of the probeâs surface
A Mission to Explore the Pioneer Anomaly
The Pioneer 10 and 11 spacecraft yielded the most precise navigation in deep
space to date. These spacecraft had exceptional acceleration sensitivity.
However, analysis of their radio-metric tracking data has consistently
indicated that at heliocentric distances of astronomical units,
the orbit determinations indicated the presence of a small, anomalous, Doppler
frequency drift. The drift is a blue-shift, uniformly changing with a rate of
Hz/s, which can be interpreted as a
constant sunward acceleration of each particular spacecraft of . This signal has become known as the Pioneer
anomaly. The inability to explain the anomalous behavior of the Pioneers with
conventional physics has contributed to growing discussion about its origin.
There is now an increasing number of proposals that attempt to explain the
anomaly outside conventional physics. This progress emphasizes the need for a
new experiment to explore the detected signal. Furthermore, the recent
extensive efforts led to the conclusion that only a dedicated experiment could
ultimately determine the nature of the found signal. We discuss the Pioneer
anomaly and present the next steps towards an understanding of its origin. We
specifically focus on the development of a mission to explore the Pioneer
Anomaly in a dedicated experiment conducted in deep space.Comment: 8 pages, 9 figures; invited talk given at the 2005 ESLAB Symposium
"Trends in Space Science and Cosmic Vision 2020", 19-21 April 2005, ESTEC,
Noordwijk, The Netherland
Survey of highly non-Keplerian orbits with low-thrust propulsion
Celestial mechanics has traditionally been concerned with orbital motion under the action of a conservative gravitational potential. In particular, the inverse square gravitational force due to the potential of a uniform, spherical mass leads to a family of conic section orbits, as determined by Isaac Newton, who showed that Keplerâs laws were derivable from his theory of gravitation. While orbital motion under the action of a conservative gravitational potential leads to an array of problems with often complex and interesting solutions, the addition of non-conservative forces offers new avenues of investigation. In particular, non-conservative forces lead to a rich diversity of problems associated with the existence, stability and control of families of highly non-Keplerian orbits generated by a gravitational potential and a non-conservative force. Highly non-Keplerian orbits can potentially have a broad range of practical applications across a number of different disciplines. This review aims to summarize the combined wealth of literature concerned with the dynamics, stability and control of highly non-Keplerian orbits for various low thrust propulsion devices, and to demonstrate some of these potential applications
Fundamental Physics with the Laser Astrometric Test Of Relativity
The Laser Astrometric Test Of Relativity (LATOR) is a joint European-U.S.
Michelson-Morley-type experiment designed to test the pure tensor metric nature
of gravitation - a fundamental postulate of Einstein's theory of general
relativity. By using a combination of independent time-series of highly
accurate gravitational deflection of light in the immediate proximity to the
Sun, along with measurements of the Shapiro time delay on interplanetary scales
(to a precision respectively better than 0.1 picoradians and 1 cm), LATOR will
significantly improve our knowledge of relativistic gravity. The primary
mission objective is to i) measure the key post-Newtonian Eddington parameter
\gamma with accuracy of a part in 10^9. (1-\gamma) is a direct measure for
presence of a new interaction in gravitational theory, and, in its search,
LATOR goes a factor 30,000 beyond the present best result, Cassini's 2003 test.
The mission will also provide: ii) first measurement of gravity's non-linear
effects on light to ~0.01% accuracy; including both the Eddington \beta
parameter and also the spatial metric's 2nd order potential contribution (never
measured before); iii) direct measurement of the solar quadrupole moment J2
(currently unavailable) to accuracy of a part in 200 of its expected size; iv)
direct measurement of the "frame-dragging" effect on light by the Sun's
gravitomagnetic field, to 1% accuracy. LATOR's primary measurement pushes to
unprecedented accuracy the search for cosmologically relevant scalar-tensor
theories of gravity by looking for a remnant scalar field in today's solar
system. We discuss the mission design of this proposed experiment.Comment: 8 pages, 9 figures; invited talk given at the 2005 ESLAB Symposium
"Trends in Space Science and Cosmic Vision 2020," 19-21 April 2005, ESTEC,
Noodrwijk, The Netherland
Artificial Neural Network Design for Tours of Multiple Asteroids
Designing multiple near-Earth asteroid (NEA) rendezvous missions is a complex global optimization problem, which involves the solution of a large combinatorial part to select the sequences of asteroids to visit. Given that more than 22,000 NEAs are known to date, trillions of permutations between asteroids need to be considered. This work develops a method based on Artificial Neural Networks (ANNs) to quickly estimate the cost and duration of low-thrust transfers between asteroids. The capability of the network to map the relationship between the characteristics of the departure and arrival orbits and the transfer cost and duration is studied. To this end, the optimal network architecture and hyper-parameters are identified for this application. An analysis of the type of orbit parametrization used as network inputs for best performance is performed. The ANN is employed within a sequence-search algorithm based on a tree-search method, which identifies multiple rendezvous sequences and selects those with lowest time of flight and propellant mass needed. To compute the full trajectory and control history, the sequences are subsequently optimized using an optimal control solver based on a pseudospectral method. The performance of the proposed methodology is assessed by investigating NEA sequences of interest. Results show that ANN can estimate the cost or duration of optimal low-thrust transfers with high accuracy, resulting into a mean relative error of less than 4%
- âŠ