731 research outputs found

    Relation between the phenomenological interactions of the algebraic cluster model and the effective two--nucleon forces

    Get PDF
    We determine the phenomenological cluster--cluster interactions of the algebraic model corresponding to the most often used effective two--nucleon forces for the 16^{16}O + α\alpha system.Comment: Latex with Revtex, 1 figure available on reques

    The s process in AGB stars as constrained by a large sample of barium stars

    Get PDF
    © ESO 2018. Context. Barium (Ba) stars are dwarf and giant stars enriched in elements heavier than iron produced by the slow neutron-capture process (s process). These stars belong to binary systems in which the primary star evolved through the asymptotic giant branch (AGB) phase. During this phase the primary star produced s-process elements and transferred them onto the secondary, which is now observed as a Ba star. Aims. We compare the largest homogeneous set of Ba giant star observations of the s-process elements Y, Zr, La, Ce, and Nd with AGB nucleosynthesis models to reach a better understanding of the s process in AGB stars. Methods. By considering the light-s (ls: Y and Zr) heavy-s (hs: La, Ce, and Nd) and elements individually, we computed for the first time quantitative error bars for the different hs-element to ls-element abundance ratios, and for each of the sample stars. We compared these ratios to low-mass AGB nucleosynthesis models. We excluded La from our analysis because the strong La lines in some of the sample stars cause an overestimation and unreliable abundance determination, as compared to the other observed hs-Type elements. Results. All the computed hs-Type to ls-Type element ratios show a clear trend of increasing with decreasing metallicity with a small spread (less than a factor of 3). This trend is predicted by low-mass AGB models in which 13C is the main neutron source. The comparison with rotating AGB models indicates the need for the presence of an angular momentum transport mechanism that should not transport chemical species, but significantly reduces the rotational speed of the core in the advanced stellar evolutionary stages. This is an independent confirmation of asteroseismology observations of the slow down of core rotation in giant stars, and of rotational velocities of white dwarfs lower than predicted by models without an extra angular momentum transport mechanism

    Barium stars as tracers of s-process nucleosynthesis in AGB stars II. Using machine learning techniques on 169 stars

    Full text link
    We aim to analyse the abundance pattern of 169 Barium (Ba) stars, using machine learning techniques and the AGB final surface abundances predicted by Fruity and Monash stellar models. We developed machine learning algorithms that use the abundance pattern of Ba stars as input to classify the initial mass and metallicity of its companion star using stellar model predictions. We use two algorithms: the first exploits neural networks to recognise patterns and the second is a nearest-neighbour algorithm, which focuses on finding the AGB model that predicts final surface abundances closest to the observed Ba star values. In the second algorithm we include the error bars and observational uncertainties to find the best fit model. The classification process is based on the abundances of Fe, Rb, Sr, Zr, Ru, Nd, Ce, Sm, and Eu. We selected these elements by systematically removing s-process elements from our AGB model abundance distributions, and identifying those whose removal has the biggest positive effect on the classification. We excluded Nb, Y, Mo, and La. Our final classification combines the output of both algorithms to identify for each Ba star companion an initial mass and metallicity range. With our analysis tools we identify the main properties for 166 of the 169 Ba stars in the stellar sample. The classifications based on both stellar sets of AGB final abundances show similar distributions, with an average initial mass of M = 2.23 MSun and 2.34 MSun and an average [Fe/H] = -0.21 and -0.11, respectively. We investigated why the removal of Nb, Y, Mo, and La improves our classification and identified 43 stars for which the exclusion had the biggest effect. We show that these stars have statistically significant different abundances for these elements compared to the other Ba stars in our sample. We discuss the possible reasons for these differences in the abundance patterns.Comment: accepted for publication in A&

    Graduate HRD Programs in South Korea

    Get PDF
    The Problem To address national issues associated with societal development, many countries are recognizing the need to educate individuals who will lead developmental initiatives. While many previous studies have been conducted to examine how and what content of human resource development (HRD) has been taught in Western countries, similar research efforts have been rarely conducted in Asian countries such as South Korea. The lack of comparative study creates a research gap in understanding how HRD programs have been designed and implemented in different countries.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    Effect of additional water supply during grain filling on protein composition and epitope characteristics of winter oats

    Get PDF
    Pure oats in gluten-free diets (GFD) represent important nutritional benefits for people suffering from celiac disease (CD). However, oat cultivars do not contain the typical CD-related wheat gliadin analog polypeptides. Emerging evidence suggests that oat cultivars containing gluten-like epitopes in avenin sequences may pose potential health risks for celiac patients in rare cases, depending on the individual’s susceptibility. Consequently, it is necessary to screen oats in terms of protein and epitope composition, to be able to select safe varieties for gluten-free applications. The overall aim of our study is to investigate the variation of oat protein composition directly related to health-related and techno-functional properties and to examine how the protein compositional parameters change due to irrigation during the grain-filling period as compared to the natural rain-fed grown, in a large winter oat population of different geographic origin. Elements of an oat sample population representing 164 winter oat varieties from 8 countries and the protein composition of resulting samples have been characterized. Size distribution of the total protein extracts has been analyzed by SE-HPLC, while the 70% ethanol extracted proteins were analyzed by RP-HPLC. Protein extracts are separated into 3 main groups of fractions on the SE-HPLC column; polymeric, avenin, and non-avenin monomeric protein groups, representing 59.17–80.87%, 12.89–31.03%, and 3.40–9.41% of total protein content, respectively. The ratio of polymeric to monomeric proteins varied between 1.71 and 6.07. 91 RP-HPLC-separated peaks have been differentiated from the ethanol extractable proteins of the entire population. The various parameters identified a lot of variation, confirming the significance of genotypic variation. In addition, it was also established that the additional water supply during grain filling significantly affected the various quantitative parameters of protein content, but not its qualitative structure. This environmental effect, however, was strongly genotype-dependent. Winter oat genotypes with low levels of epitope content were identified and it was proven that these characteristics were independent of the environmental factor of water availability. These genotypes are appropriate for initiating a specific breeding program to yield oat cultivars suitable for CD patients
    • 

    corecore