84 research outputs found

    Landscape genetics of an endangered lemur (Propithecus tattersalli) within its entire fragmented range

    Get PDF
    Habitat fragmentation may strongly reduce individuals' dispersal among resource patches and hence influence population distribution and persistence. We studied the impact of landscape heterogeneity on the dispersal of the golden-crowned sifaka (Propithecus tattersalli), an endangered social lemur species living in a restricted and highly fragmented landscape. We combined spatial analysis and population genetics methods to describe population units and identify the environmental factors which best predict the rates and patterns of genetic differentiation within and between populations. We used non-invasive methods to genotype 230 individuals at 13 microsatellites in all the main forest fragments of its entire distribution area. Our analyses suggest that the Manankolana River and geographical distance are the primary structuring factors, while a national road crossing the region does not seem to impede gene flow. Altogether, our results are in agreement with a limited influence of forest habitat connectivity on gene flow patterns (except for North of the species' range), suggesting that dispersal is still possible today among most forest patches for this species. Within forest patches, we find that dispersal is mainly among neighbouring social groups, hence confirming previous behavioural observation

    Evolutionary stasis of the pseudoautosomal boundary in strepsirrhine primates

    Get PDF
    Sex chromosomes are typically comprised of a non-recombining region and a recombining pseudoautosomal region. Accurately quantifying the relative size of these regions is critical for sex-chromosome biology both from a functional and evolutionary perspective. The evolution of the pseudoautosomal boundary (PAB) is well documented in haplorrhines (apes and monkeys) but not in strepsirrhines (lemurs and lorises). Here, we studied the PAB of seven species representing the main strepsirrhine lineages by sequencing a male and a female genome in each species and using sex differences in coverage to identify the PAB. We found that during primate evolution, the PAB has remained unchanged in strepsirrhines whereas several recombination suppression events moved the PAB and shortened the pseudoautosomal region in haplorrhines. Strepsirrhines are well known to have much lower sexual dimorphism than haplorrhines. We suggest that mutations with antagonistic effects between males and females have driven recombination suppression and PAB evolution in haplorrhines

    A highly polymorphic insertion in the Y-chromosome amelogenin gene can be used for evolutionary biology, population genetics and sexing in Cetacea and Artiodactyla

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The early radiation of the <it>Cetartiodactyla </it>is complex, and unambiguous molecular characters are needed to clarify the positions of hippotamuses, camels and pigs relative to the remaining taxa (<it>Cetacea </it>and <it>Ruminantia</it>). There is also a need for informative genealogic markers for Y-chromosome population genetics as well as a sexing method applicable to all species from this group. We therefore studied the sequence variation of a partial sequence of the evolutionary conserved amelogenin gene to assess its potential use in each of these fields.</p> <p>Results and discussion</p> <p>We report a large interstitial insertion in the Y amelogenin locus in most of the <it>Cetartiodactyla </it>lineages (cetaceans and ruminants). This sex-linked size polymorphism is the result of a 460–465 bp inserted element in intron 4 of the amelogenin gene of Ruminants and Cetaceans. Therefore, this polymorphism can easily be used in a sexing assay for these species.</p> <p>When taking into account this shared character in addition to nucleotide sequence, gene genealogy follows sex-chromosome divergence in <it>Cetartiodactyla </it>whereas it is more congruent with zoological history when ignoring these characters. This could be related to a loss of homology between chromosomal copies given the old age of the insertion.</p> <p>The 1 kbp <it>Amel-Y </it>amplified fragment is also characterized by high nucleotide diversity (64 polymorphic sites spanning over 1 kbp in seven haplotypes) which is greater than for other Y-chromosome sequence markers studied so far but less than the mitochondrial control region.</p> <p>Conclusion</p> <p>The gender-dependent polymorphism we have identified is relevant not only for phylogenic inference within the <it>Cetartiodactyla </it>but also for Y-chromosome based population genetics and gender determination in cetaceans and ruminants. One single protocol can therefore be used for studies in population and evolutionary genetics, reproductive biotechnologies, and forensic science.</p

    ATLAS detector and physics performance: Technical Design Report, 1

    Get PDF

    Evolutionary systematic of three species of troglobitic beetles: electrophoretic and morphological evidence

    No full text
    International audienc

    Population studies on an endemic troglobitic beetle: geographical patterns of genetic variation, gene flow and genetic structure compared with morphometric data.

    Full text link
    Abstract Highly specialized obligatory cave beetles endemic to the French Pyrenees offer an opportunity to investigate the relative importance of environmental conditions and ecological characteristics on the organization of genetic variability, to describe the genetic structure of populations, and to assess the extent of gene flow between local populations in relation to geologic structure. Twenty-three geographically close populations of the beetle Speonomus hydrophilus occurring both in caves (reduced fluctuations in many abiotic parameters) and under the deepest layer of soil in mountains (more exposed to climatic variations) were studied. Significant genetic differentiation at 17 allozyme loci was found among populations in close proximity, as well as among those from distant parts of range. On a larger scale, genetic differences among populations appear to result from low dispersal rates between populations. The spatial patterning observed suggests that allozyme frequencies are not responding to environmentally controlled selection. Substantial genetic divergence (F(ST) = 0.112) occurred throughout the range, with important variation in levels of genetic variability (H: 0.065-0.184) among populations. A significant level of substructuring has occurred among the populations with four major geographic areas of similarity indicated. The substructuring of the species into regions suggests an influence of paleoclimatic gradient and paleoenvironment on the population's genetic structure. Also, founder effect and reduced gene flow appear to have influenced populations in the southeastern portion of the range.</jats:p
    corecore