295 research outputs found

    Multi-messenger astronomy of gravitational-wave sources with flexible wide-area radio transient surveys

    Get PDF
    We explore opportunities for multi-messenger astronomy using gravitational waves (GWs) and prompt, transient low-frequency radio emission to study highly energetic astrophysical events. We review the literature on possible sources of correlated emission of gravitational waves and radio transients, highlighting proposed mechanisms that lead to a short-duration, high-flux radio pulse originating from the merger of two neutron stars or from a superconducting cosmic string cusp. We discuss the detection prospects for each of these mechanisms by low-frequency dipole array instruments such as LWA1, LOFAR and MWA. We find that a broad range of models may be tested by searching for radio pulses that, when de-dispersed, are temporally and spatially coincident with a LIGO/Virgo GW trigger within a \usim 30 second time window and \usim 200 \mendash 500 \punits{deg}^{2} sky region. We consider various possible observing strategies and discuss their advantages and disadvantages. Uniquely, for low-frequency radio arrays, dispersion can delay the radio pulse until after low-latency GW data analysis has identified and reported an event candidate, enabling a \emph{prompt} radio signal to be captured by a deliberately targeted beam. If neutron star mergers do have detectable prompt radio emissions, a coincident search with the GW detector network and low-frequency radio arrays could increase the LIGO/Virgo effective search volume by up to a factor of \usim 2. For some models, we also map the parameter space that may be constrained by non-detections.Comment: 31 pages, 4 figure

    Observations of Giant Pulses from Pulsar PSR B0950+08 using LWA1

    Get PDF
    We report the detection of giant pulse emission from PSR B0950+08 in 24 hours of observations made at 39.4 MHz, with a bandwidth of 16 MHz, using the first station of the Long Wavelength Array, LWA1. We detected 119 giant pulses from PSR B0950+08 (at its dispersion measure), which we define as having SNRs at least 10 times larger than for the mean pulse in our data set. These 119 pulses are 0.035% of the total number of pulse periods in the 24 hours of observations. The rate of giant pulses is about 5.0 per hour. The cumulative distribution of pulse strength SS is a steep power law, N(>S)S4.7N(>S)\propto S^{-4.7}, but much less steep than would be expected if we were observing the tail of a Gaussian distribution of normal pulses. We detected no other transient pulses in a dispersion measure range from 1 to 90 pc cm3^{-3}, in the beam tracking PSR B0950+08. The giant pulses have a narrower temporal width than the mean pulse (17.8 ms, on average, vs. 30.5 ms). The pulse widths are consistent with a previously observed weak dependence on observing frequency, which may be indicative of a deviation from a Kolmogorov spectrum of electron density irregularities along the line of sight. The rate and strength of these giant pulses is less than has been observed at \sim100 MHz. Additionally, the mean (normal) pulse flux density we observed is less than at \sim100 MHz. These results suggest this pulsar is weaker and produces less frequent giant pulses at 39 MHz than at 100 MHz.Comment: 27 pages, 12 figures, typos correcte

    Magnetic Field scaling of Relaxation curves in Small Particle Systems

    Get PDF
    We study the effects of the magnetic field on the relaxation of the magnetization of small monodomain non-interacting particles with random orientations and distribution of anisotropy constants. Starting from a master equation, we build up an expression for the time dependence of the magnetization which takes into account thermal activation only over barriers separating energy minima, which, in our model, can be computed exactly from analytical expressions. Numerical calculations of the relaxation curves for different distribution widths, and under different magnetic fields H and temperatures T, have been performed. We show how a \svar scaling of the curves, at different T and for a given H, can be carried out after proper normalization of the data to the equilibrium magnetization. The resulting master curves are shown to be closely related to what we call effective energy barrier distributions, which, in our model, can be computed exactly from analytical expressions. The concept of effective distribution serves us as a basis for finding a scaling variable to scale relaxation curves at different H and a given T, thus showing that the field dependence of energy barriers can be also extracted from relaxation measurements.Comment: 12 pages, 9 figures, submitted to Phys. Rev.

    Performance on a probabilistic inference task in healthy subjects receiving ketamine compared with patients with schizophrenia

    Get PDF
    Evidence suggests that some aspects of schizophrenia can be induced in healthy volunteers through acute administration of the non-competitive NMDA-receptor antagonist, ketamine. In probabilistic inference tasks, patients with schizophrenia have been shown to 'jump to conclusions' (JTC) when asked to make a decision. We aimed to test whether healthy participants receiving ketamine would adopt a JTC response pattern resembling that of patients. The paradigmatic task used to investigate JTC has been the 'urn' task, where participants are shown a sequence of beads drawn from one of two 'urns', each containing coloured beads in different proportions. Participants make a decision when they think they know the urn from which beads are being drawn. We compared performance on the urn task between controls receiving acute ketamine or placebo with that of patients with schizophrenia and another group of controls matched to the patient group. Patients were shown to exhibit a JTC response pattern relative to their matched controls, whereas JTC was not evident in controls receiving ketamine relative to placebo. Ketamine does not appear to promote JTC in healthy controls, suggesting that ketamine does not affect probabilistic inferences

    Batch and fed-batch growth of Pichia pastoris under increased air pressure

    Get PDF
    Pichia pastoris CBS 2612 behavior under air pressures of 1 bar, 3 bar and 5 bar in culture media of glycerol (pure and crude) and methanol was studied. Generally, the increase in oxygen transfer rate due to the increase of total pressure improved cellular growth for all carbon sources and for batch and fed-batch processes with different feeding rate strategies. In batch cultures, 1.4-fold, 1.2-fold, and 1.5-fold improvement in biomass production was obtained with the increase of air pressure up to 5 bar, using methanol, pure glycerol, and crude glycerol, respectively. The raise of air pressure to 5 bar using exponential feeding rate leaded to 1.4-fold improvement in biomass yield per glycerol mass consumed, for crude and pure glycerol. The current low cost of crude glycerol from the biodiesel production together with the present results shows the possibility of improving cell mass production of P. pastoris using increased air pressure.The authors acknowledge the financial support provided by "Fundacao para a Ciencia e Tecnologia" (Grant SFRH/BD/47371/2008)

    Observations of Giant Pulses from Pulsar B0950+08 Using LWA1

    Get PDF
    We report the detection of giant pulse (GP) emission from PSR B0950+08 in 24 hours of observations made at 39.4 MHz, with a bandwidth of 16 MHz, using the first station of the Long Wavelength Array. We detected 119 GPs from PSR B0950+08 (at its dispersion measure (DM)), which we define as having a signal-to-noise ratio at least 10 times larger than for the mean pulse in our data set. These 119 pulses are 0.035% of the total number of pulse periods in the 24 hours of observations. The rate of GPs is about 5.0 per hour. The cumulative distribution of pulse strength S is a steep power law, _N(>S) ∝ S^(-4.7), but much less steep than would be expected if we were observing the tail of a Gaussian distribution of normal pulses. We detected no other transient pulses in a DM range from 1 to 90 pc cm^(−3), in the beam tracking PSR B0950+08. The GPs have a narrower temporal width than the mean pulse (17.8 ms, on average, versus 30.5 ms). The pulse widths are consistent with a previously observed weak dependence on observing frequency, which may be indicative of a deviation from a Kolmogorov spectrum of electron density irregularities along the line of sight. The rate and strength of these GPs is less than has been observed at ~100 MHz. Additionally, the mean (normal) pulse flux density we observed is less than at ~100 MHz. These results suggest this pulsar is weaker and produces less frequent GPs at 39 MHz than at 100 MHz

    Gabapentin for chronic pelvic pain in women (GaPP2): a multicentre, randomised, double-blind, placebo-controlled trial

    Get PDF
    Background: Chronic pelvic pain affects 2–24% of women worldwide and evidence for medical treatments is scarce. Gabapentin is effective in treating some chronic pain conditions. We aimed to measure the efficacy and safety of gabapentin in women with chronic pelvic pain and no obvious pelvic pathology. Methods: We performed a multicentre, randomised, double-blind, placebo-controlled randomised trial in 39 UK hospital centres. Eligible participants were women with chronic pelvic pain (with or without dysmenorrhoea or dyspareunia) of at least 3 months duration. Inclusion criteria were 18–50 years of age, use or willingness to use contraception to avoid pregnancy, and no obvious pelvic pathology at laparoscopy, which must have taken place at least 2 weeks before consent but less than 36 months previously. Participants were randomly assigned in a 1:1 ratio to receive gabapentin (titrated to a maximum dose of 2700 mg daily) or matching placebo for 16 weeks. The online randomisation system minimised allocations by presence or absence of dysmenorrhoea, psychological distress, current use of hormonal contraceptives, and hospital centre. The appearance, route, and administration of the assigned intervention were identical in both groups. Patients, clinicians, and research staff were unaware of the trial group assignments throughout the trial. Participants were unmasked once they had provided all outcome data at week 16–17, or sooner if a serious adverse event requiring knowledge of the study drug occurred. The dual primary outcome measures were worst and average pain scores assessed separately on a numerical rating scale in weeks 13–16 after randomisation, in the intention-to-treat population. Self-reported adverse events were assessed according to intention-to-treat principles. This trial is registered with the ISRCTN registry, ISCRTN77451762. Findings: Participants were screened between Nov 30, 2015, and March 6, 2019, and 306 were randomly assigned (153 to gabapentin and 153 to placebo). There were no significant between-group differences in both worst and average numerical rating scale (NRS) pain scores at 13–16 weeks after randomisation. The mean worst NRS pain score was 7·1 (standard deviation [SD] 2·6) in the gabapentin group and 7·4 (SD 2·2) in the placebo group. Mean change from baseline was −1·4 (SD 2·3) in the gabapentin group and −1·2 (SD 2·1) in the placebo group (adjusted mean difference −0·20 [97·5% CI −0·81 to 0·42]; p=0·47). The mean average NRS pain score was 4·3 (SD 2·3) in the gabapentin group and 4·5 (SD 2·2) in the placebo group. Mean change from baseline was −1·1 (SD 2·0) in the gabapentin group and −0·9 (SD 1·8) in the placebo group (adjusted mean difference −0·18 [97·5% CI −0·71 to 0·35]; p=0·45). More women had a serious adverse event in the gabapentin group than in the placebo group (10 [7%] of 153 in the gabapentin group compared with 3 [2%] of 153 in the placebo group; p=0·04). Dizziness, drowsiness, and visual disturbances were more common in the gabapentin group. Interpretation: This study was adequately powered, but treatment with gabapentin did not result in significantly lower pain scores in women with chronic pelvic pain, and was associated with higher rates of side-effects than placebo. Given the increasing reports of abuse and evidence of potential harms associated with gabapentin use, it is important that clinicians consider alternative treatment options to off-label gabapentin for the management of chronic pelvic pain and no obvious pelvic pathology. Funding: National Institute for Health Research

    Painful and painless mutations of SCN9A and SCN11A voltage-gated sodium channels

    Get PDF
    Chronic pain is a global problem affecting up to 20% of the world’s population and has a significant economic, social and personal cost to society. Sensory neurons of the dorsal root ganglia (DRG) detect noxious stimuli and transmit this sensory information to regions of the central nervous system (CNS) where activity is perceived as pain. DRG neurons express multiple voltage-gated sodium channels that underlie their excitability. Research over the last 20 years has provided valuable insights into the critical roles that two channels, NaV1.7 and NaV1.9, play in pain signalling in man. Gain of function mutations in NaV1.7 cause painful conditions while loss of function mutations cause complete insensitivity to pain. Only gain of function mutations have been reported for NaV1.9. However, while most NaV1.9 mutations lead to painful conditions, a few are reported to cause insensitivity to pain. The critical roles these channels play in pain along with their low expression in the CNS and heart muscle suggest they are valid targets for novel analgesic drugs
    corecore