1,958 research outputs found
Local regularity for parabolic nonlocal operators
Weak solutions to parabolic integro-differential operators of order are studied. Local a priori estimates of H\"older norms and
a weak Harnack inequality are proved. These results are robust with respect to
. In this sense, the presentation is an extension of Moser's
result in 1971.Comment: 31 pages, 3 figure
Heat Kernel Bounds for the Laplacian on Metric Graphs of Polygonal Tilings
We obtain an upper heat kernel bound for the Laplacian on metric graphs
arising as one skeletons of certain polygonal tilings of the plane, which
reflects the one dimensional as well as the two dimensional nature of these
graphs.Comment: 8 page
The LIMS Community and its collaborative Livestock Information Management System for managing livestock statistics and sharing information in the SADC region (Southern African Development Community)
The paper aims at presenting some selected components of the SADC collaborative LIMS (Livestock Information Management System), particularly a wiki, a web mapping and a forum used in combination with other tools. The system experiments new ways for collating fragmented livestock statistics and sharing information in a region. It was developed in the context of the sector-wide integration of a regional economic community achievable through an improved institutional collaboration which LIMS shall foster. The initial problem stated that stakeholders of the region and in the sector were not sharing enough data or information, because of accessibility and interoperability problems, fragmentation of dataset lying under the responsibility of too many stakeholders, lack of standardization of contents, lack of a sharable virtual web space or due to sociological and institutional barriers. To overcome problems an hybrid information system was designed based on collaborative principles and components. The system is ruled by a few international standards on contents and exchange protocols. It is firstly based on an institutional alliance, the LIMS community, forming professional and somehow social networks organized at regional and national levels. This community is made of key stakeholders from countries and livestock commodity chains of the region who endeavour to share and disseminate information and knowledge in a common system. They already use a collaborative database developed with a view of better collating quantitative data which contents were standardized. Finally the system was broaden up by adding a series of new collaborative software's which have been grouped under a portal to achieve specific communication and information management functions. The portal (url: http://www.printlims.org ; wiki.printlims.org) uses a content management system (CMS EZpublish) and other WEB2.0-derived tools like WIKI manuals and documents, technical and thematic forums (Dgroups from CTA and phpBB) and a new interactive mapping tool (Geoclip©) to complement an already existing web mapping service. The LIMS system can be compared to similar initiatives like DEVinfo developed by the United Nations and CountrySTAT by FAO.(Résumé d'auteur
Properties making a chaotic system a good Pseudo Random Number Generator
We discuss two properties making a deterministic algorithm suitable to
generate a pseudo random sequence of numbers: high value of Kolmogorov-Sinai
entropy and high-dimensionality. We propose the multi dimensional Anosov
symplectic (cat) map as a Pseudo Random Number Generator. We show what chaotic
features of this map are useful for generating Pseudo Random Numbers and
investigate numerically which of them survive in the discrete version of the
map. Testing and comparisons with other generators are performed.Comment: 10 pages, 3 figures, new version, title changed and minor correction
Abrupt Convergence and Escape Behavior for Birth and Death Chains
We link two phenomena concerning the asymptotical behavior of stochastic
processes: (i) abrupt convergence or cut-off phenomenon, and (ii) the escape
behavior usually associated to exit from metastability. The former is
characterized by convergence at asymptotically deterministic times, while the
convergence times for the latter are exponentially distributed. We compare and
study both phenomena for discrete-time birth-and-death chains on Z with drift
towards zero. In particular, this includes energy-driven evolutions with energy
functions in the form of a single well. Under suitable drift hypotheses, we
show that there is both an abrupt convergence towards zero and escape behavior
in the other direction. Furthermore, as the evolutions are reversible, the law
of the final escape trajectory coincides with the time reverse of the law of
cut-off paths. Thus, for evolutions defined by one-dimensional energy wells
with sufficiently steep walls, cut-off and escape behavior are related by time
inversion.Comment: 2 figure
The Asymptotic Number of Attractors in the Random Map Model
The random map model is a deterministic dynamical system in a finite phase
space with n points. The map that establishes the dynamics of the system is
constructed by randomly choosing, for every point, another one as being its
image. We derive here explicit formulas for the statistical distribution of the
number of attractors in the system. As in related results, the number of
operations involved by our formulas increases exponentially with n; therefore,
they are not directly applicable to study the behavior of systems where n is
large. However, our formulas lend themselves to derive useful asymptotic
expressions, as we show.Comment: 16 pages, 1 figure. Minor changes. To be published in Journal of
Physics A: Mathematical and Genera
Automating the measurement of physiological parameters: a case study in the image analysis of cilia motion
International audienceAs image processing and analysis techniques improve, an increasing number of procedures in bio-medical analyses can be automated. This brings many benefits, e.g improved speed and accuracy, leading to more reliable diagnoses and follow-up, ultimately improving patients outcome. Many automated procedures in bio-medical imaging are well established and typically consist of detecting and counting various types of cells (e.g. blood cells, abnormal cells in Pap smears, and so on). In this article we propose to automate a different and difficult set of measurements, which is conducted on the cilia of people suffering from a variety of respiratory tract diseases. Cilia are slender, microscopic, hair-like structures or organelles that extend from the surface of nearly all mammalian cells. Motile cilia, such as those found in the lungs and respiratory tract, present a periodic beating motion that keep the airways clear of mucus and dirt. In this paper, we propose a fully automated method that computes various measurements regarding the motion of cilia, taken with high-speed video-microscopy. The advantage of our approach is its capacity to automatically compute robust, adaptive and regionalized measurements, i.e. associated with different regions in the image. We validate the robustness of our approach, and illustrate its performance in comparison to the state-of-the-art
Perturbative expansions from Monte Carlo simulations at weak coupling: Wilson loops and the static-quark self-energy
Perturbative coefficients for Wilson loops and the static-quark self-energy
are extracted from Monte Carlo simulations at weak coupling. The lattice
volumes and couplings are chosen to ensure that the lattice momenta are all
perturbative. Twisted boundary conditions are used to eliminate the effects of
lattice zero modes and to suppress nonperturbative finite-volume effects due to
Z(3) phases. Simulations of the Wilson gluon action are done with both periodic
and twisted boundary conditions, and over a wide range of lattice volumes (from
to ) and couplings (from to ).
A high precision comparison is made between the simulation data and results
from finite-volume lattice perturbation theory. The Monte Carlo results are
shown to be in excellent agreement with perturbation theory through second
order. New results for third-order coefficients for a number of Wilson loops
and the static-quark self-energy are reported.Comment: 36 pages, 15 figures, REVTEX documen
Self dual models and mass generation in planar field theory
We analyse in three space-time dimensions, the connection between abelian
self dual vector doublets and their counterparts containing both an explicit
mass and a topological mass. Their correspondence is established in the
lagrangian formalism using an operator approach as well as a path integral
approach. A canonical hamiltonian analysis is presented, which also shows the
equivalence with the lagrangian formalism. The implications of our results for
bosonisation in three dimensions are discussed.Comment: 15 pages,Revtex, No figures; several changes; revised version to
appear in Physical Review
Reaction Diffusion Models in One Dimension with Disorder
We study a large class of 1D reaction diffusion models with quenched disorder
using a real space renormalization group method (RSRG) which yields exact
results at large time. Particles (e.g. of several species) undergo diffusion
with random local bias (Sinai model) and react upon meeting. We obtain the
large time decay of the density of each specie, their associated universal
amplitudes, and the spatial distribution of particles. We also derive the
spectrum of exponents which characterize the convergence towards the asymptotic
states. For reactions with several asymptotic states, we analyze the dynamical
phase diagram and obtain the critical exponents at the transitions. We also
study persistence properties for single particles and for patterns. We compute
the decay exponents for the probability of no crossing of a given point by,
respectively, the single particle trajectories () or the thermally
averaged packets (). The generalized persistence exponents
associated to n crossings are also obtained. Specifying to the process or A with probabilities , we compute exactly the exponents
and characterizing the survival up to time t of a domain
without any merging or with mergings respectively, and and
characterizing the survival up to time t of a particle A without
any coalescence or with coalescences respectively.
obey hypergeometric equations and are numerically surprisingly close to pure
system exponents (though associated to a completely different diffusion
length). Additional disorder in the reaction rates, as well as some open
questions, are also discussed.Comment: 54 pages, Late
- …
