2,530 research outputs found

    Intention insertion: Activating an action's perceptual consequences is sufficient to induce non-willed motor behavior

    Get PDF
    An R script which reproduces the analyses described in the published pape

    Multivariate MR Biomarkers Better Predict Cognitive Dysfunction in Mouse Models of Alzheimers Disease

    Full text link
    To understand multifactorial conditions such as Alzheimers disease (AD) we need brain signatures that predict the impact of multiple pathologies and their interactions. To help uncover the relationships between brain circuits and cognitive markers we have used mouse models that represent, at least in part, the complex interactions altered in AD. In particular, we aimed to understand the relationship between vulnerable brain circuits and memory deficits measured in the Morris water maze, and we tested several predictive modeling approaches. We used in vivo manganese enhanced MRI voxel based analyses to reveal regional differences in volume (morphometry), signal intensity (activity), and magnetic susceptibility (iron deposition, demyelination). These regions included the hippocampus, olfactory areas, entorhinal cortex and cerebellum. The image based properties of these regions were used to predict spatial memory. We next used eigenanatomy, which reduces dimensionality to produce sets of regions that explain the variance in the data. For each imaging marker, eigenanatomy revealed networks underpinning a range of cognitive functions including memory, motor function, and associative learning. Finally, the integration of multivariate markers in a supervised sparse canonical correlation approach outperformed single predictor models and had significant correlates to spatial memory. Among a priori selected regions, the fornix also provided good predictors, raising the possibility of investigating how disease propagation within brain networks leads to cognitive deterioration. Our results support that modeling approaches integrating multivariate imaging markers provide sensitive predictors of AD-like behaviors. Such strategies for mapping brain circuits responsible for behaviors may help in the future predict disease progression, or response to interventions.Comment: 23 pages, 3 Tables, 6 Figures; submitted for publicatio

    Determining the shape of defects in non-absorbing inhomogeneous media from far-field measurements

    Get PDF
    International audienceWe consider non-absorbing inhomogeneous media represented by some refraction index. We have developed a method to reconstruct, from far-field measurements, the shape of the areas where the actual index differs from a reference index. Following the principle of the Factorization Method, we present a fast reconstruction algorithm relying on far field measurements and near field values, easily computed from the reference index. Our reconstruction result is illustrated by several numerical test cases

    Proof-Pattern Recognition and Lemma Discovery in ACL2

    Full text link
    We present a novel technique for combining statistical machine learning for proof-pattern recognition with symbolic methods for lemma discovery. The resulting tool, ACL2(ml), gathers proof statistics and uses statistical pattern-recognition to pre-processes data from libraries, and then suggests auxiliary lemmas in new proofs by analogy with already seen examples. This paper presents the implementation of ACL2(ml) alongside theoretical descriptions of the proof-pattern recognition and lemma discovery methods involved in it

    A Survey of Monte Carlo Tree Search Methods

    Get PDF
    Monte Carlo tree search (MCTS) is a recently proposed search method that combines the precision of tree search with the generality of random sampling. It has received considerable interest due to its spectacular success in the difficult problem of computer Go, but has also proved beneficial in a range of other domains. This paper is a survey of the literature to date, intended to provide a snapshot of the state of the art after the first five years of MCTS research. We outline the core algorithm's derivation, impart some structure on the many variations and enhancements that have been proposed, and summarize the results from the key game and nongame domains to which MCTS methods have been applied. A number of open research questions indicate that the field is ripe for future work

    Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models.

    Get PDF
    Knowing the catalytic turnover numbers of enzymes is essential for understanding the growth rate, proteome composition, and physiology of organisms, but experimental data on enzyme turnover numbers is sparse and noisy. Here, we demonstrate that machine learning can successfully predict catalytic turnover numbers in Escherichia coli based on integrated data on enzyme biochemistry, protein structure, and network context. We identify a diverse set of features that are consistently predictive for both in vivo and in vitro enzyme turnover rates, revealing novel protein structural correlates of catalytic turnover. We use our predictions to parameterize two mechanistic genome-scale modelling frameworks for proteome-limited metabolism, leading to significantly higher accuracy in the prediction of quantitative proteome data than previous approaches. The presented machine learning models thus provide a valuable tool for understanding metabolism and the proteome at the genome scale, and elucidate structural, biochemical, and network properties that underlie enzyme kinetics

    Fourier Method for Approximating Eigenvalues of Indefinite Stekloff Operator

    Full text link
    We introduce an efficient method for computing the Stekloff eigenvalues associated with the Helmholtz equation. In general, this eigenvalue problem requires solving the Helmholtz equation with Dirichlet and/or Neumann boundary condition repeatedly. We propose solving the related constant coefficient Helmholtz equation with Fast Fourier Transform (FFT) based on carefully designed extensions and restrictions of the equation. The proposed Fourier method, combined with proper eigensolver, results in an efficient and clear approach for computing the Stekloff eigenvalues.Comment: 12 pages, 4 figure

    On the Convergence of the Born Series in Optical Tomography with Diffuse Light

    Full text link
    We provide a simple sufficient condition for convergence of Born series in the forward problem of optical diffusion tomography. The condition does not depend on the shape or spatial extent of the inhomogeneity but only on its amplitude.Comment: 23 pages, 7 figures, submitted to Inverse Problem

    Convergence and Stability of the Inverse Scattering Series for Diffuse Waves

    Full text link
    We analyze the inverse scattering series for diffuse waves in random media. In previous work the inverse series was used to develop fast, direct image reconstruction algorithms in optical tomography. Here we characterize the convergence, stability and approximation error of the serie

    Resonance regimes of scattering by small bodies with impedance boundary conditions

    Full text link
    The paper concerns scattering of plane waves by a bounded obstacle with complex valued impedance boundary conditions. We study the spectrum of the Neumann-to-Dirichlet operator for small wave numbers and long wave asymptotic behavior of the solutions of the scattering problem. The study includes the case when k=0k=0 is an eigenvalue or a resonance. The transformation from the impedance to the Dirichlet boundary condition as impedance grows is described. A relation between poles and zeroes of the scattering matrix in the non-self adjoint case is established. The results are applied to a problem of scattering by an obstacle with a springy coating. The paper describes the dependence of the impedance on the properties of the material, that is on forces due to the deviation of the boundary of the obstacle from the equilibrium position
    corecore