1,758 research outputs found
Interface Ferromagnetism in a SrMnO3/LaMnO3 Superlattice
Resonant soft x-ray absorption measurements at the O K edge on a
SrMnO3/LaMnO3 superlattice show a shoulder at the energy of doped holes, which
corresponds to the main peak of resonant scattering from the modulation in the
doped hole density. Scattering line shape at the Mn L3,2 edges has a strong
variation below the ferromagnetic transition temperature. This variation has a
period equal to half the superlattice superperiod and follows the development
of the ferromagnetic moment, pointing to a ferromagnetic phase developing at
the interfaces. It occurs at the resonant energies for Mn3+ and Mn4+ valences.
A model for these observations is presented, which includes a double-exchange
two-site orbital and the variation with temperature of the hopping frequency
tij between the two sites.Comment: 8.1 pages, 6 figure
Probing the Role of the Barrier Layer in Magnetic Tunnel Junction Transport
Magnetic tunnel junctions with a ferrimagnetic barrier layer have been
studied to understand the role of the barrier layer in the tunneling process -
a factor that has been largely overlooked until recently. Epitaxial oxide
junctions of highly spin polarized La0.7Sr0.3MnO3 and Fe3O4 electrodes with
magnetic NiMn2O4 (NMO) insulating barrier layers provide a magnetic tunnel
junction system in which we can probe the effect of the barrier by comparing
junction behavior above and below the Curie temperature of the barrier layer.
When the barrier is paramagnetic, the spin polarized transport is dominated by
interface scattering and surface spin waves; however, when the barrier is
ferrimagnetic, spin flip scattering due to spin waves within the NMO barrier
dominates the transport.Comment: 10 pages, 3 figure
Use of Oil Drill Cuttings as an Alternative Raw Material in Sandcrete Blocks
This research has investigated the use of waste oil drill cuttings treated by thermal desorption in sandcrete, a major construction material used throughout Nigeria and much of West Africa. Sandcrete samples were prepared using a sand to cement ratio of 6:1. The results show that replacing up to 50 wt% of sand by treated oil drill cuttings produced sandcrete with reduced water absorption and reduced sorptivity, increased density and reduced thermal conductivity. In addition, the compressive strengths of samples containing oil drill cuttings were comparable to control samples. The work demonstrates the potential for the beneficial reuse of waste oil drill cuttings treated by thermal desorption in the production of sandcrete blocks with improved properties
Cation-ordering effects in the single layered manganite La(2/3)Sr(4/3)MnO4
We have synthesized epitaxial La(1-x)Sr(1+x)MnO4 (x=1/3) films as random
alloys and cation-ordered analogues to probe how cation order affects the
properties of a 2D manganite. The films show weak ferromagnetic ordering up to
130 K, although there is a dramatic difference in magnetic anisotropy depending
on the cation order. While all films exhibit similar gapped insulator behavior
above 130 K, there is a significant difference in the low temperature transport
mechanism depending on the cation order. Differences in magnetic anisotropy and
low temperature transport are consistent with differences in Mn 3d orbital
occupancies. Together this work suggests that cation ordering can significantly
alter the Mn 3d orbital ground state in these correlated electron systems.Comment: 4 figure
Single-Step Quantum Search Using Problem Structure
The structure of satisfiability problems is used to improve search algorithms
for quantum computers and reduce their required coherence times by using only a
single coherent evaluation of problem properties. The structure of random k-SAT
allows determining the asymptotic average behavior of these algorithms, showing
they improve on quantum algorithms, such as amplitude amplification, that
ignore detailed problem structure but remain exponential for hard problem
instances. Compared to good classical methods, the algorithm performs better,
on average, for weakly and highly constrained problems but worse for hard
cases. The analytic techniques introduced here also apply to other quantum
algorithms, supplementing the limited evaluation possible with classical
simulations and showing how quantum computing can use ensemble properties of NP
search problems.Comment: 39 pages, 12 figures. Revision describes further improvement with
multiple steps (section 7). See also
http://www.parc.xerox.com/dynamics/www/quantum.htm
Potential barrier lowering and electrical transport at the LaAlO/SrTiO heterointerface
Using a combination of vertical transport measurements across and lateral
transport measurements along the LaAlO/SrTiO heterointerface, we
demonstrate that significant potential barrier lowering and band bending are
the cause of interfacial metallicity. Barrier lowering and enhanced band
bending extends over 2.5 nm into LaAlO as well as SrTiO. We explain
origins of high-temperature carrier saturation, lower carrier concentration,
and higher mobility in the sample with the thinnest LaAlO film on a
SrTiO substrate. Lateral transport results suggest that parasitic
interface scattering centers limit the low-temperature lateral electron
mobility of the metallic channel.Comment: 10 pages, 3 figures, and 1 tabl
Landscape of solutions in constraint satisfaction problems
We present a theoretical framework for characterizing the geometrical
properties of the space of solutions in constraint satisfaction problems,
together with practical algorithms for studying this structure on particular
instances. We apply our method to the coloring problem, for which we obtain the
total number of solutions and analyze in detail the distribution of distances
between solutions.Comment: 4 pages, 4 figures. Replaced with published versio
Phase Transition in the Number Partitioning Problem
Number partitioning is an NP-complete problem of combinatorial optimization.
A statistical mechanics analysis reveals the existence of a phase transition
that separates the easy from the hard to solve instances and that reflects the
pseudo-polynomiality of number partitioning. The phase diagram and the value of
the typical ground state energy are calculated.Comment: minor changes (references, typos and discussion of results
Extremal Optimization at the Phase Transition of the 3-Coloring Problem
We investigate the phase transition of the 3-coloring problem on random
graphs, using the extremal optimization heuristic. 3-coloring is among the
hardest combinatorial optimization problems and is closely related to a 3-state
anti-ferromagnetic Potts model. Like many other such optimization problems, it
has been shown to exhibit a phase transition in its ground state behavior under
variation of a system parameter: the graph's mean vertex degree. This phase
transition is often associated with the instances of highest complexity. We use
extremal optimization to measure the ground state cost and the ``backbone'', an
order parameter related to ground state overlap, averaged over a large number
of instances near the transition for random graphs of size up to 512. For
graphs up to this size, benchmarks show that extremal optimization reaches
ground states and explores a sufficient number of them to give the correct
backbone value after about update steps. Finite size scaling gives
a critical mean degree value . Furthermore, the
exploration of the degenerate ground states indicates that the backbone order
parameter, measuring the constrainedness of the problem, exhibits a first-order
phase transition.Comment: RevTex4, 8 pages, 4 postscript figures, related information available
at http://www.physics.emory.edu/faculty/boettcher
- …
