141 research outputs found

    Criticality Analysis of Activity Networks under Interval Uncertainty

    Get PDF
    Dedicated to the memory of Professor Stefan Chanas - The extended abstract version of this paper has appeared in Proceedings of 11th International Conference on Principles and Practice of Constraint Programming (CP2005) ("Interval Analysis in Scheduling", Fortin et al. 2005)International audienceThis paper reconsiders the Project Evaluation and Review Technique (PERT) scheduling problem when information about task duration is incomplete. We model uncertainty on task durations by intervals. With this problem formulation, our goal is to assert possible and necessary criticality of the different tasks and to compute their possible earliest starting dates, latest starting dates, and floats. This paper combines various results and provides a complete solution to the problem. We present the complexity results of all considered subproblems and efficient algorithms to solve them

    Controlled overexpression of Pax6 in vivo negatively autoregulates the Pax6 locus, causing cell-autonomous defects of late cortical progenitor proliferation with little effect on cortical arealization

    Get PDF
    Levels of expression of the transcription factor Pax6 vary throughout corticogenesis in a rostro-lateral(high) to caudo-medial(low) gradient across the cortical proliferative zone. Previous loss-of-function studies have indicated that Pax6 is required for normal cortical progenitor proliferation, neuronal differentiation, cortical lamination and cortical arealization, but whether and how its level of expression affects its function is unclear. We studied the developing cortex of PAX77 YAC transgenic mice carrying several copies of the human PAX6 locus with its full complement of regulatory regions. We found that PAX77 embryos express Pax6 in a normal spatial pattern, with levels up to three times higher than wild type. By crossing PAX77 mice with a new YAC transgenic line that reports Pax6 expression (DTy54), we showed that increased expression is limited by negative autoregulation. Increased expression reduces proliferation of late cortical progenitors specifically, and analysis of PAX77↔wild-type chimeras indicates that the defect is cell autonomous. We analyzed cortical arealization in PAX77 mice and found that, whereas the loss of Pax6 shifts caudal cortical areas rostrally, Pax6 overexpression at levels predicted to shift rostral areas caudally has very little effect. These findings indicate that Pax6 levels are stabilized by autoregulation, that the proliferation of cortical progenitors is sensitive to altered Pax6 levels and that cortical arealization is not

    Interaction of RNA polymerase II and the small RNA machinery affects heterochromatic silencing in Drosophila

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Heterochromatin is the tightly packaged dynamic region of the eukaryotic chromosome that plays a vital role in cellular processes such as mitosis and meiotic recombination. Recent experiments in <it>Schizosaccharomyces pombe </it>have revealed the structure of centromeric heterochromatin is affected in RNAi pathway mutants. It has also been shown in fission yeast that the heterochromatin barrier is traversed by RNA Pol II and that the passage of RNA Pol II through heterochromatin is important for heterochromatin structure. Thus, an intricate interaction between the RNAi machinery and RNA Pol II affects heterochromatin structure. However, the role of the RNAi machinery and RNA Pol II on the metazoan heterochromatin landscape is not known. This study analyses the interaction of the small RNA machinery and RNA Pol II on <it>Drosophila </it>heterochromatin structure.</p> <p>Results</p> <p>The results in this paper show genetic and biochemical interaction between RNA Pol II (largest and second largest subunit) and small RNA silencing machinery components (<it>dcr-2, ago1, ago2, piwi, Lip [D], aub </it>and <it>hls</it>). Immunofluorescence analysis of polytene chromosomes from trans-heterozygotes of RNA Pol II and different mutations of the small RNA pathways show decreased H3K9me2 and mislocalization of Heterochromatin protein-1. A genetic analysis performed on these mutants showed a strong suppression of <it>white-mottled4h </it>position effect variegation. This was further corroborated by a western blot analysis and chromatin immunoprecipitation, which showed decreased H3K9me2 in trans-heterozygote mutants compared to wild type or single heterozygotes. Co-immunoprecipitation performed using <it>Drosophila </it>embryo extracts showed the RNA Pol II largest subunit interacting with Dcr-2 and dAGO1. Co-localization performed on polytene chromosomes showed RNA Pol II and dAGO1 overlapping at some sites.</p> <p>Conclusion</p> <p>Our experiments show a genetic and biochemical interaction between RNA Pol II (largest and second largest subunits) and the small RNA silencing machinery in <it>Drosophila</it>. The interaction has functional aspects in terms of determining H3K9me2 and HP-1 deposition at the chromocentric heterochromatin. Thus, RNA Pol II has an important role in establishing heterochromatin structure in <it>Drosophila</it>.</p

    DNaseI Hypersensitivity and Ultraconservation Reveal Novel, Interdependent Long-Range Enhancers at the Complex Pax6 Cis-Regulatory Region

    Get PDF
    The PAX6 gene plays a crucial role in development of the eye, brain, olfactory system and endocrine pancreas. Consistent with its pleiotropic role the gene exhibits a complex developmental expression pattern which is subject to strict spatial, temporal and quantitative regulation. Control of expression depends on a large array of cis-elements residing in an extended genomic domain around the coding region of the gene. The minimal essential region required for proper regulation of this complex locus has been defined through analysis of human aniridia-associated breakpoints and YAC transgenic rescue studies of the mouse smalleye mutant. We have carried out a systematic DNase I hypersensitive site (HS) analysis across 200 kb of this critical region of mouse chromosome 2E3 to identify putative regulatory elements. Mapping the identified HSs onto a percent identity plot (PIP) shows many HSs correspond to recognisable genomic features such as evolutionarily conserved sequences, CpG islands and retrotransposon derived repeats. We then focussed on a region previously shown to contain essential long range cis-regulatory information, the Pax6 downstream regulatory region (DRR), allowing comparison of mouse HS data with previous human HS data for this region. Reporter transgenic mice for two of the HS sites, HS5 and HS6, show that they function as tissue specific regulatory elements. In addition we have characterised enhancer activity of an ultra-conserved cis-regulatory region located near Pax6, termed E60. All three cis-elements exhibit multiple spatio-temporal activities in the embryo that overlap between themselves and other elements in the locus. Using a deletion set of YAC reporter transgenic mice we demonstrate functional interdependence of the elements. Finally, we use the HS6 enhancer as a marker for the migration of precerebellar neuro-epithelium cells to the hindbrain precerebellar nuclei along the posterior and anterior extramural streams allowing visualisation of migratory defects in both pathways in Pax6(Sey/Sey) mice

    Sequencing of Pax6 loci from the elephant shark reveals a family of Pax6 genes in vertebrate genomes, forged by ancient duplications and divergences

    Get PDF
    Pax6 is a developmental control gene essential for eye development throughout the animal kingdom. In addition, Pax6 plays key roles in other parts of the CNS, olfactory system, and pancreas. In mammals a single Pax6 gene encoding multiple isoforms delivers these pleiotropic functions. Here we provide evidence that the genomes of many other vertebrate species contain multiple Pax6 loci. We sequenced Pax6-containing BACs from the cartilaginous elephant shark (Callorhinchus milii) and found two distinct Pax6 loci. Pax6.1 is highly similar to mammalian Pax6, while Pax6.2 encodes a paired-less Pax6. Using synteny relationships, we identify homologs of this novel paired-less Pax6.2 gene in lizard and in frog, as well as in zebrafish and in other teleosts. In zebrafish two full-length Pax6 duplicates were known previously, originating from the fish-specific genome duplication (FSGD) and expressed in divergent patterns due to paralog-specific loss of cis-elements. We show that teleosts other than zebrafish also maintain duplicate full-length Pax6 loci, but differences in gene and regulatory domain structure suggest that these Pax6 paralogs originate from a more ancient duplication event and are hence renamed as Pax6.3. Sequence comparisons between mammalian and elephant shark Pax6.1 loci highlight the presence of short- and long-range conserved noncoding elements (CNEs). Functional analysis demonstrates the ancient role of long-range enhancers for Pax6 transcription. We show that the paired-less Pax6.2 ortholog in zebrafish is expressed specifically in the developing retina. Transgenic analysis of elephant shark and zebrafish Pax6.2 CNEs with homology to the mouse NRE/Pα internal promoter revealed highly specific retinal expression. Finally, morpholino depletion of zebrafish Pax6.2 resulted in a "small eye" phenotype, supporting a role in retinal development. In summary, our study reveals that the pleiotropic functions of Pax6 in vertebrates are served by a divergent family of Pax6 genes, forged by ancient duplication events and by independent, lineage-specific gene losses

    Evaluation of 309 Environmental Chemicals Using a Mouse Embryonic Stem Cell Adherent Cell Differentiation and Cytotoxicity Assay

    Get PDF
    The vast landscape of environmental chemicals has motivated the need for alternative methods to traditional whole-animal bioassays in toxicity testing. Embryonic stem (ES) cells provide an in vitro model of embryonic development and an alternative method for assessing developmental toxicity. Here, we evaluated 309 environmental chemicals, mostly food-use pesticides, from the ToxCast™ chemical library using a mouse ES cell platform. ES cells were cultured in the absence of pluripotency factors to promote spontaneous differentiation and in the presence of DMSO-solubilized chemicals at different concentrations to test the effects of exposure on differentiation and cytotoxicity. Cardiomyocyte differentiation (α,β myosin heavy chain; MYH6/MYH7) and cytotoxicity (DRAQ5™/Sapphire700™) were measured by In-Cell Western™ analysis. Half-maximal activity concentration (AC50) values for differentiation and cytotoxicity endpoints were determined, with 18% of the chemical library showing significant activity on either endpoint. Mining these effects against the ToxCast Phase I assays (∼500) revealed significant associations for a subset of chemicals (26) that perturbed transcription-based activities and impaired ES cell differentiation. Increased transcriptional activity of several critical developmental genes including BMPR2, PAX6 and OCT1 were strongly associated with decreased ES cell differentiation. Multiple genes involved in reactive oxygen species signaling pathways (NRF2, ABCG2, GSTA2, HIF1A) were strongly associated with decreased ES cell differentiation as well. A multivariate model built from these data revealed alterations in ABCG2 transporter was a strong predictor of impaired ES cell differentiation. Taken together, these results provide an initial characterization of metabolic and regulatory pathways by which some environmental chemicals may act to disrupt ES cell growth and differentiation

    A Concerted Action of Engrailed and Gooseberry-Neuro in Neuroblast 6-4 Is Triggering the Formation of Embryonic Posterior Commissure Bundles

    Get PDF
    One challenging question in neurogenesis concerns the identification of cues that trigger axonal growth and pathfinding to form stereotypic neuronal networks during the construction of a nervous system. Here, we show that in Drosophila, Engrailed (EN) and Gooseberry-Neuro (GsbN) act together as cofactors to build the posterior commissures (PCs), which shapes the ventral nerve cord. Indeed, we show that these two proteins are acting together in axon growth and midline crossing, and that this concerted action occurs at early development, in neuroblasts. More precisely, we identified that their expressions in NB 6-4 are necessary and sufficient to trigger the formation of the PCs, demonstrating that segmentation genes such as EN and GsbN play a crucial role in the determination of NB 6-4 in a way that will later influence growth and guidance of all the axons that form the PCs. We also demonstrate a more specific function of GsbN in differentiated neurons, leading to fasciculations between axons, which might be required to obtain PC mature axon bundles

    Low incidence of SARS-CoV-2, risk factors of mortality and the course of illness in the French national cohort of dialysis patients

    Get PDF

    Hemizygous Le-Cre Transgenic Mice Have Severe Eye Abnormalities on Some Genetic Backgrounds in the Absence of LoxP Sites

    Get PDF
    Eye phenotypes were investigated in Le-Cre(Tg/-); Pax6(fl/+) mice, which were expected to show tissue-specific reduction of Pax6 in surface ectoderm derivatives. To provide a better comparison with our previous studies of Pax6(+/-) eye phenotypes, hemizygous Le-Cre(Tg/-) and heterozygous Pax6(fl/+)mice were crossed onto the CBA/Ca genetic background. After the Le-Cre transgene had been backcrossed to CBA/Ca for seven generations, significant eye abnormalities occurred in some hemizygous Le-Cre(Tg/-); Pax6(+/+) controls (without a floxed Pax6(fl) allele) as well as experimental Le-Cre(Tg/-); Pax6(fl/+) mice. However, no abnormalities were seen in Le-Cre(-/-); Pax6(fl/+) or Le-Cre(-/-); Pax6(+/+) controls (without the Le-Cre transgene). The severity and frequency of the eye abnormalities in Le-Cre(Tg/-); Pax6(+/+) control mice diminished after backcrossing Le-Cre(Tg/-) mice to the original FVB/N strain for two generations, showing that the effect was reversible. This genetic background effect suggests that the eye abnormalities are a consequence of an interaction between the Le-Cre transgene and alleles of unknown modifier genes present in certain genetic backgrounds. The abnormalities were also ameliorated by introducing additional Pax6 gene copies on a CBA/Ca background, suggesting involvement of Pax6 depletion in Le-Cre(Tg/-); Pax6(+/+) mice rather than direct action of Cre recombinase on cryptic pseudo-loxP sites. One possibility is that expression of Cre recombinase from the Pax6-Le regulatory sequences in the Le-Cre transgene depletes cofactors required for endogenous Pax6 gene expression. Our observation that eye abnormalities can occur in hemizygous Le-Cre(Tg/-); Pax6(+/+) mice, in the absence of a floxed allele, demonstrates the importance of including all the relevant genetic controls in Cre-loxP experiments
    corecore