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Abstract
In this paper, we first introduce the concept of interval-valued invex mappings by
using gH-differentiability and compare it with interval-valued weakly invex mappings.
We can observe that interval-valued invex mappings are more general than
interval-valued weakly invex mappings. In addition, the sufficient optimality condition
for interval-valued objective functions is derived under invexity.
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1 Introduction
Convexity plays a vital role in many aspects of mathematical programming including, for
example, sufficient optimality conditions and duality theorems. In inequality constrained
optimization, the Kuhn-Tucker conditions are sufficient for optimality if the functions in-
volved are convex. However, application of the Kuhn-Tucker conditions as sufficient con-
ditions for optimality is not restricted to convex problems, and various generalizations of
convexity have been made in order to explore the extent of this applicability.

An invex function, introduced by Hanson [], is one of the generalized convex functions.
He considered a differentiable function f : Rn → R for which there exists a vector-valued
function η : Rn × Rn → Rn such that, for all x, y ∈ Rn, the inequality

f (x) – f (y) ≥ ∇f (y)tη(x, y) ()

holds. Hanson [] proved that if, instead of the usual convexity conditions, the objective
function and each of the constraints of a nonlinear constrained optimization problem are
all invex for the same η, then both the sufficiency of Kuhn-Tucker conditions and weak
and strong Wolfe duality still hold. Later, Craven [] named functions satisfying () invex
(with respect to η).

Ben-Israel and Mond [] considered the preinvex function f with respect to η (not nec-
essarily differentiable) for which there exists a vector-valued function η : Rn × Rn → Rn

such that, for all x, y ∈ Rn, the inequality

f
(
y + λη(x, y)

) ≤ λf (x) + ( – λ)f (y) ()
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holds. Moreover, they found that differentiable functions satisfying () satisfy (). Further
properties and applications of preinvexity and its some generalizations for some more
general problems were studied by Antczak [, ], Bector et al. [], Mohan and Neogy [],
Suneja et al. [], and others.

However, the majority of real world optimization problems often involve data uncer-
tainty or imprecision owing to measurement errors or some unexpected things. Interval-
valued optimization [] is an important model to deal with the problems with data uncer-
tainty. Many approaches to interval-valued optimization problems have been explored in
considerable details (see, for example, [–]). Recently, Wu has extended the concept of
convexity for a real-valued function to LU-convexity for an interval-valued function, then
he has established the Kuhn-Tucker conditions [, ] for an optimization problem with
an interval-valued objective function under the assumption of LU-convexity. In [], Wu
studied the Kuhn-Tucker optimality conditions in multiobjective programming problems
with an interval-valued objective function. Similar to the concept of non-dominated solu-
tion in vector optimization problems, Wu has proposed a solution concept in optimization
problems with an interval-valued objective function based on a partial ordering on the set
of all closed intervals. Then, the interval-valued Wolfe duality theory [] and Lagrangian
duality theory [] for interval-valued optimization problems have been proposed. Wu
[] studied the duality theory for interval-valued linear programming problems. Chalco-
Cano et al.[] gave Kuhn-Tucker type optimality conditions, which are obtained using
gH-derivative of interval-valued functions. Also, they discussed the relationship between
the approach presented with other well-known approaches given by Wu []. However,
these methods given by Chalco-Cano et al. [] cannot solve a kind of optimization prob-
lems with interval-valued objective functions, which are not LU-convex but invex. For
example, the interval-valued functions such as f (x) = [x –  sin x, x – sin x + ] are not
LU-convex but invex with respect to

η(x, y) =
(

sin x – sin y

cos y
,
sin x – sin y

cos y

)t

(the concept of invex can be seen in Definition ). Zhang et al. [] proposed the Kuhn-
Tucker optimality conditions for an optimization problem with an interval-valued objec-
tive function under the assumptions of preinvexity and weak invexity. The definition of
interval-valued invexity in this paper is more general than that of weak invexity given in
[] (see Theorem  and Example ).

This paper aims at extending the Kuhn-Tucker optimality conditions to nonconvex opti-
mization problem. First, we extend the concept of invexity using gH-derivative of interval-
valued functions. The concept of invexity by using gH-differentiability of interval-valued
functions is more general than the concept of invexity by using weak differentiability (see
Theorem  and Example ). Second, we present several properties of invex interval-valued
functions. Finally, the Kuhn-Tucker optimality conditions are proposed for an interval-
valued objective function under the assumptions of invexity.

2 Preliminaries
Let us denote by I the class of all closed intervals in R. A = [aL, aU ] ∈ I denotes a closed
interval, where aL and aU mean the lower and upper bounds of A respectively. For every
a ∈ R, we denote a = [a, a].
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Definition  Let A = [aL, aU ] and B = [bL, bU ] be in I . We define
(i) A + B = {a + b : a ∈ A and b ∈ B} = [aL + bL, aU + bU ];

(ii) –A = {–a : a ∈ A} = [–aU , –aL];
(iii) A × B = {ab : a ∈ A and b ∈ B} = [minab, maxab], where

minab = min{aLbL, aLbU , aUbL, aUbU} and maxab = max{aLbL, aLbU , aUbL, aUbU}.

Then it is easy to conclude that

A – B = A + (–B) =
[
aL – bU , aU – bL],

kA = {ka : a ∈ A} =

{
[kaL, kaU ] if k ≥ ,
|k|[–aU , –aL] if k < ,

()

where k is a real number.
Hausdorff metric between two closed intervals A and B defined as

dH (A, B) = max
{∣∣aL – bL∣∣,

∣∣aU – bU ∣∣}.

Definition  Let A = [aL, aU ] and B = [bL, bU ] in I . We write A � B if aL ≤ bL and aU ≤ bU ,
A ≺ B if A � B and A 	= B, i.e., the following (a) or (a), or (a) is satisfied.

(a) aL < bL and aU ≤ bU ;
(a) aL ≤ bL and aU < bU ;
(a) aL < bL and aU < bU .

Let A, B ∈ I , if there exists C ∈ I such that A = B + C, then C is called the Hukuhara
difference of A and B and written as C = A 
 B; when we say that the H-difference C
exists, it means that aL – bL ≤ aU – bU and C = [aL – bL, aU – bU ].

Proposition  Let A = [aL, aU ] and B = [bL, bU ] be two closed intervals in I . If aL – bL ≤
aU – bU , then the H-difference C exists and C = [aL – bL, aU – bU ].

It follows from Proposition  that the H-difference is unique, but it does not always exist.
To address this issue, a generalization of the Hukuhara difference is proposed in [].

Definition  ([]) Let A = [aL, aU ] and B = [bL, bU ] be two closed intervals, the gH-differ-
ence of A and B is defined by

[
aL, aU] 
g

[
bL, bU]

=
[
min

(
aL – bL, aU – bU)

, max
(
aL – bL, aU – bU)]

.

For example, [, ] 
g [, ] = [, ], [, ] 
g [, ] = [–, ]. And a – b = [a, a] 
g [b, b] =
[a – b, a – b] = a – b.

Proposition  ([])
(i) For every pair A, B ∈ I , A 
g B always exists and A 
g B ∈ I .

(ii) A 
g B �  if and only if A � B.

The function f : Rn → I defined on the Euclidean space Rn is called an interval-valued
function, i.e., f (x) = f (x, . . . , xn) is a closed interval in R for each x ∈ Rn. f can be also
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written as f (x) = [f L(x), f U (x)], where f L and f U are two real-valued functions defined on
Rn and satisfy f L(x) ≤ f U (x) for every x ∈ Rn. Based on the above concept, Wu [] has
introduced the concepts of limit, continuity and two kinds of differentiation of interval-
valued functions.

Let f be an interval-valued function defined on Rn and A = [aL, aU ] be an interval in R,
c ∈ Rn. If for every ε >  there exists δ >  such that, for  < ‖x–c‖ < δ, we have dH (f (x), A) <
ε, then

lim
x→c

f (x) = A.

Proposition  ([]) Let f be an interval-valued function defined on Rn and A = [aL, aU ] be
an interval in R. Then limx→c f (x) = A if and only if limx→c f L(x) = aL and limx→c f U (x) = aU .

Proposition  ([]) Let f be an interval-valued function defined on Rn. Then f is contin-
uous at c ∈ Rn if and only if both f L and f U are continuous at c.

Proposition  ([]) Let X be an open set in R. An interval-valued function f : X → I with
f (x) = [f L(x), f U (x)] is called weakly differentiable at x if the real-valued functions f L and
f U are differentiable at x (in the usual sense).

Definition  ([]) Let X be an open set in R. An interval-valued function f : X → I is
called H-differentiable at x if there exists a closed interval A(x) ∈ I such that the limits

lim
h→+

f (x + h) 
 f (x)
h

and

lim
h→+

f (x) 
 f (x – h)
h

both exist and equal A(x). In this case, A(x) is called the H-derivative of f at x.

The following concept is particularization of the fuzzy concepts presented in [] to the
interval case. These are defined by using the usual Hukuhara difference 
.

Definition  ([]) Let T = (a, b) and let t ∈ T . Given f : T → I , we say that f is strongly
generalized differentiable (G-differentiable) at t if there exists an element f ′(t) ∈ I such
that for all h >  sufficiently small,

(i) ∃f (x + h) 
 f (x), f (x) 
 f (x – h) and

lim
h→

f (x + h) 
 f (x)
h

= lim
h→

f (x) 
 f (x – h)
h

= f ′(x),

or
(ii) ∃f (x) 
 f (x + h), f (x – h) 
 f (x) and

lim
h→

f (x) 
 f (x + h)
–h

= lim
h→

f (x – h) 
 f (x)
–h

= f ′(x),
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or
(iii) ∃f (x + h) 
 f (x), f (x – h) 
 f (x) and

lim
h→

f (x + h) 
 f (x)
h

= lim
h→

f (x – h) 
 f (x)
–h

= f ′(x),

or
(iv) ∃f (x) 
 f (x + h), f (x) 
 f (x – h) and

lim
h→

f (x) 
 f (x + h)
–h

= lim
h→

f (x) 
 f (x – h)
h

= f ′(x).

Based on the gH-difference, Stefanini [] proposed the following differentiation.

Definition  ([]) Let x ∈ (a, b) and h be such that x + h ∈ (a, b), then the gH-derivative
of a function f : (a, b) → I at x is defined as

f ′(x) = lim
h→

f (x + h) 
g f (x)
h

. ()

If f ′(x) ∈ I satisfying () exists, we say that f is generalized Hukuhara differentiable
(gH-differentiable for short) at x.

The next two results express the gH-derivative in terms of the endpoints of the interval-
valued function.

Theorem  ([]) Let f : (a, b) → I be such that f (x) = [f L(x), f U (x)]. If f L(x) and f U (x) are
differentiable functions at t ∈ (a, b), then f (x) is gH-differentiable at t, and

f ′(x) =
[
min

{(
f L)′(x),

(
f U)′(x)

}
, max

{(
f L)′(x),

(
f U)′(x)

}]
.

Theorem  ([]) Let f : (a, b) → I be such that f (x) = [f L(x), f U (x)]. Then f (x) is gH-dif-
ferentiable at t ∈ (a, b) if and only if one of the following cases holds:

(a) f L(x) and f U (x) are differentiable at t;
(b) the lateral derivatives (f L)′–(t), (f L)′+(t) and (f U )′–(t), (f U )′+(t) exist and satisfy

(f L)′–(t) = (f U )′+(t) and (f L)′+(t) = (f U )′–(t).

Let f be an interval-valued function defined on X ⊆ Rn, comparing above definitions,
the following statements hold.

Proposition 
(i) If f is H-differentiable at x ∈ X , then it is G-differentiable at x, the converse is not

true.
(ii) If f is G-differentiable at x ∈ X , then it is gH-differentiable at x, the converse is not

true.
(iii) If f is weakly differentiable at x, then it is gH-differentiable at x, the converse is not

true.

Definition  ([]) Let f (x) be an interval-valued function defined on �, where � is an
open subset of Rn. Let Dxi (i = , , . . . , n) stand for the partial differentiation with respect
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to the ith variable xi. Assume that f L(x) and f U (x) have continuous partial derivatives so
that Dxi f L(x) and Dxi f U (x) are continuous. For i = , , . . . , n, define

Dxi f (x) =
[
min

(
Dxi f

L(x), Dxi f
U (x)

)
, max

(
Dxi f

L(x), Dxi f
U (x)

)]
,

we will say that f (x) is differentiable at x, and we write

∇f (x) =
(
Dx f (x), Dx f (x), . . . , Dxn f (x)

)t .

We call ∇f (x) the gradient of the interval-valued function at x.

Example  Let f : R → I be defined by f (x) = [x
 + x

, x
 + x

 + ]. So f L(x) = x
 + x


and f U (x) = x

 + x
 + . Dx f L(x) = x, Dx f L(x) = x, Dx f U (x) = x, Dx f U (x) = x.

Thus,

Dx f (x) =

{
[x, x] if x ≥ ,
[x, x] if x < ,

()

Dx f (x) =

{
[x, x] if x ≥ ,
[x, x] if x < .

()

Thus,

∇f (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

([x, x], [x, x])t if x ≥ , x ≥ ,
([x, x], [x, x])t if x ≥ , x < ,
([x, x], [x, x])t if x < , x ≥ ,
([x, x], [x, x])t if x < , x < .

()

Further,

∇Lf (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(x, x)t if x ≥ , x ≥ ,
(x, x)t if x ≥ , x < ,
(x, x)t if x < , x ≥ ,
(x, x)t if x < , x < ,

()

∇U f (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(x, x)t if x ≥ , x ≥ ,
(x, x)t if x ≥ , x < ,
(x, x)t if x < , x ≥ ,
(x, x)t if x < , x < .

()

3 Preinvexity and invexity of interval-valued functions
The concept of convexity plays an important role in the optimization theory. In recent
years, the concept of convexity has been generalized in several directions. An important
generalization of convex functions is a preinvex function, which was introduced by Weir
and Mond []. The concepts of preinvexity and invexity have been extended to interval-
valued functions by Zhang et al. [], and the Kuhn-Tucker optimality conditions have
been derived for preinvex and invex optimization problems with an interval-valued ob-
jective function under the conditions of weakly continuous differentiability and Hukuhara
differentiability.
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In what follows, we show the connection between preinvex and invex interval-valued
mappings. Here, we recall the definition of preinvex interval-valued mappings.

Definition  Let y ∈ X ⊆ Rn. Then we say that X is invex at y with respect to η : X × X →
Rn if for each x ∈ X, λ ∈ [, ], y + λη(x, y) ∈ X. X is said to be an invex set with respect to
η if X is invex at each y ∈ X.

Definition  ([]) Let K ⊆ Rn be an invex set with respect to η : K × K → Rn, f (x) =
[f L(x), f U (x)] be an interval-valued function defined on K . We say that f is preinvex at x∗

with respect to η if

f
(
x + λη

(
x∗, x

)) � λf
(
x∗) + ( – λ)f (x)

for each λ ∈ [, ] and each x ∈ K .

Theorem  Let K be an invex subset of Rn with respect to η : K × K → Rn and f be an
interval-valued function defined on K . Then f is preinvex at x∗ if and only if f L and f U are
preinvex at x∗ with respect to the same η : K × K → Rn, i.e.,

f L(x + λη
(
x∗, x

)) ≤ λf L(x∗) + ( – λ)f L(x), ()

f U(
x + λη

(
x∗, x

)) ≤ λf U(
x∗) + ( – λ)f U (x) ()

for each λ ∈ [, ] and each x ∈ K .

Definition  ([]) Let K ⊆ Rn be an invex set with respect to η : K × K → Rn, f (x) =
[f L(x), f U (x)] be an interval-valued function defined on K . We say that f is invex at x∗ if
the real-valued functions f L and f U are invex at x∗, i.e.,

f L(x) – f L(x∗) ≥ η
(
x, x∗)t∇f L(x∗), ()

f U (x) – f U(
x∗) ≥ η

(
x, x∗)t∇f U(

x∗) ()

for each x ∈ K .

Remark  Since the definition of interval-valued invex functions defined in [] consid-
ered the end-point functions, we call them weakly invex functions in this paper.

Based on the gH-differentiability, we give the definition of interval-valued invex func-
tions as follows.

Definition  A gH-differentiable interval-valued mapping f : X → I is said to be invex
on the invex set X ⊆ Rn with respect to η if for any x, y ∈ X, λ ∈ [, ],

f (x) 
g f
(
x∗) � η

(
x, x∗)t∇f

(
x∗) ()

for each x ∈ K .
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Example  Consider the interval-valued mapping f (x) = [, ]x, x ∈ R. Then f (x) is
gH-differentiable on R by Theorem , and

∇f (x) =

{
[x, x], x ≥ ,
[x, x], x < .

Let η(x, y) = x – y, thus

η(x, y)t∇f (y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[y(x – y), y(x – y)], y ≥ , x – y ≥ ,
[y(x – y), y(x – y)], y < , x – y < ,
[y(x – y), y(x – y)], y ≥ , x – y < ,
[y(x – y), y(x – y)], y < , x – y ≥ ,

()

f (x) 
g f (y) =

{
[x – y, x – y], x ≥ y,
[x – y, x – y], x < y.

()

We can observe that f (x) is invex with respect to η(x, y) = x – y by Definition .

The following theorem shows the relationship between interval-valued invex functions
and weakly invex functions.

Theorem  Let K be an invex subset of Rn with respect to η : K × K → Rn and f (x) =
[f L(x), f U (x)] be an interval-valued function defined on K . If f is weakly invex, then it is
invex, but the converse is not true in general.

Proof Since f is weakly invex at x∗, we have that real-valued functions f L and f U are invex
at x∗, i.e.,

f L(x) – f L(x∗) ≥ η
(
x, x∗)t∇f L(x∗), ()

f U (x) – f U(
x∗) ≥ η

(
x, x∗)t∇f U(

x∗) ()

for each λ ∈ [, ] and each x ∈ K .
() On the condition of η(x, x∗)t∇f L(x∗) ≤ η(x, x∗)t∇f U (x∗), we have

η
(
x, x∗)t∇f

(
x∗) =

[
η
(
x, x∗)t∇f L(x∗),η

(
x, x∗)t∇f U(

x∗)].

If f (x) 
g f (x∗) = [f L(x) – f L(x∗), f U (x) – f U (x∗)], then from () and () we have

f (x) 
g f
(
x∗) � η

(
x, x∗)t∇f

(
x∗).

If f (x) 
g f (x∗) = [f U (x) – f U (x∗), f L(x) – f L(x∗)], then

f L(x) – f L(x∗) ≥ f U (x) – f U(
x∗) ≥ η

(
x, x∗)t∇f U(

x∗) ≥ η
(
x, x∗)t∇f L(x∗).

We have

f (x) 
g f
(
x∗) � ∇f

(
x∗)t

η
(
x, x∗).
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() On the condition of η(x, x∗)t∇f L(x∗) > η(x, x∗)t∇f U (x∗), we have

η
(
x, x∗)t∇f

(
x∗) =

[
η
(
x, x∗)t∇f U(

x∗),η
(
x, x∗)t∇f L(x∗)].

If f (x) 
g f (x∗) = [f U (x) – f U (x∗), f L(x) – f L(x∗)], then from () and () we have

f (x) 
g f
(
x∗) � η

(
x, x∗)t∇f

(
x∗).

If f (x) 
g f (x∗) = [f L(x) – f L(x∗), f U (x) – f U (x∗)], then

f U (x) – f U(
x∗) ≥ f L(x) – f L(x∗) ≥ η

(
x, x∗)t∇f L(x∗) ≥ η

(
x, x∗)t∇f U(

x∗).

Thus

f (x) 
g f
(
x∗) � η

(
x, x∗)t∇f

(
x∗). �

Example  Considering the interval-valued function f (x) = [x –  sin x, x – sin x + ],
x ∈ R, we can prove that both f L(x) and f U (x) are weakly invex with respect to

η(x, y) =
(

sin x – sin y

cos y
,
sin x – sin y

cos y

)t

.

Then f (x) = [x –  sin x, x – sin x + ], x ∈ R is invex with respect to the same η(x, y) by
Theorem .

Example  Considering the interval-valued function f (x) = [–|x|, |x|], x ∈ R,

η(x, y) =

{
x – y, xy ≥ ,
x + y, xy < .

From Theorem , it follows that f (x) is gH-differentiable on R, and ∇f (y) = [–, ], thus

η(x, y)t∇f (y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[–(x – y), x – y], x ≥ y ≥  or y ≤ x ≤ ,
[x – y, –(x – y)], y ≥ x ≥  or x ≤ y ≤ ,
[–(x + y), x + y], xy <  and x + y > ,
[x + y, –(x + y)], xy <  and x + y < ,

f (x) 
g f (y) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[–(x – y), x – y], x ≥ y ≥  or y ≤ x ≤ ,
[x – y, –(x – y)], y ≥ x ≥  or x ≤ y ≤ ,
[–(x + y), x + y], x >  > y and x + y > ,
[x + y, –(x + y)], x >  > y and x + y < ,
[–(x + y), x + y], x <  < y.

Then

f (x) 
g f (y) � η(x, y)∇f (y)t .

But f (x) is not weakly invex since f L(x) is not weakly differentiable at x = .
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Let x = , y = –, η(x, y) = ,

f L(y + λη(x, y)
)

=  – λ > – + λ = λf L(y) + ( – λ)f L(x).

Thus, f (x) is not preinvex since f L(x) is not preinvex with respect to η.

The following theorem given in [] illustrates the relations between weakly invex
interval-valued and preinvex interval-valued functions.

Theorem  Let K ⊆ Rn be an invex set with respect to η : K × K → Rn; if f (x) =
[f L(x), f U (x)] is a weakly continuously differentiable and preinvex interval-valued func-
tion defined on K , then f is also a weakly invex interval-valued function with respect to the
same η defined on K .

We can prove the following result.

Theorem  Let K ⊆ Rn be an invex set with respect to η : K × K → Rn. If f (x) =
[f L(x), f U (x)] is a weakly differentiable and preinvex interval-valued function defined on
K , then f is also an interval-valued invex function with respect to the same η defined on K .

Proof Since f is interval-valued preinvex and weakly differentiable, we have

f L(y + λη(x, y)
)

– f L(y) ≤ λ
[
f L(x) – f L(y)

]
,

f U(
y + λη(x, y)

)
– f U (y) ≤ λ

[
f U (x) – f U (y)

]
,

which for λ ∈ (, ] implies

f L(y + λη(x, y)) – f L(y)
λ

≤ f L(x) – f L(y),

f U (y + λη(x, y)) – f U (y)
λ

≤ f U (x) – f U (y).

By taking limits for λ → +, since f is weakly differentiable, we get

η(x, y)t∇f L(y) ≤ f L(x) – f L(y), ()

η(x, y)t∇f U (y) ≤ f U (x) – f U (y). ()

On the other hand, from Definition  and Theorem , we have

f (x) 
g f (y) =

{
[f L(x) – f L(y), f U (x) – f U (y)], f L(x) – f L(y) ≤ f U (x) – f U (y),
[f U (x) – f U (y), f L(x) – f L(y)], f L(x) – f L(y) > f U (x) – f U (y)

()

and

η(x, y)t∇f (y)

= η(x, y)t[min
{∇f L(y),∇f U (y)

}
, max

{∇f L(y),∇f U (y)
}]

()

=

{
[η(x, y)t∇f L(y),η(x, y)t∇f U (y)], η(x, y)t∇f L(y) ≤ η(x, y)t∇f U (y),
[η(x, y)t∇f U (y),η(x, y)t∇f L(y)], ∇η(x, y)t f L(y) > η(x, y)t∇f U (y).

()
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From ()-() it follows that

f (x) 
g f (y) � η(x, y)t∇f (y).

Thus, f is an invex interval-valued function. �

The following example given in [] shows that a weakly invex interval-valued function
may not be a preinvex interval-valued function, from Theorem  we can conclude that the
converse of Theorem  is not true.

Example  The interval-valued function f (x) = [, ] · ex, x ∈ R is invex with respect to
η = –, but not preinvex with respect to the same function η.

However, Mohan and Neogy [] have proved that a differentiable invex real-valued func-
tion is also preinvex under the following condition.

Condition C We say that the function η : Rn → Rn satisfies Condition C if for any x, y ∈ X,

η
(
x, y + λη(x, y)

)
= –λη(x, y), η

(
y, y + λη(x, y)

)
= ( – λ)η(x, y).

We can conclude that a continuously weakly differentiable invex interval-valued func-
tion f : K → I is also a preinvex interval-valued function on K if the function η satisfies
Condition C.

Theorem  Suppose that K is an invex set of Rn with respect to η : K × K → Rn and
f : K → I is a continuously weakly differentiable interval-valued function on an open set
containing K . If f is invex on K with respect to η and η satisfies Condition C, then f is
preinvex with respect to η on K .

Proof Suppose that x, x ∈ X. Let  < λ <  be given and look at x = x + λη(x, x).
Note that x ∈ X, by invexity of f̃ , we have

f (x) 
g f (x) � η(x, x)t∇f (x)

and

f (x) 
g f (x) � η(x, x)t∇f (x),

i.e.,

[
min

{
f L(x) – f L(x), f U (x) – f U (x)

}
, max

{
f L(x) – f L(x), f U (x) – f U (x)

}]

� η(x, x)t[min
{∇f L(x),∇f U (x)

}
, max

{∇f L(x),∇f U (x)
}]

and

[
min

{
f L(x) – f L(x), f U (x) – f U (x)

}
, max

{
f L(x) – f L(x), f U (x) – f U (x)

}]

� η(x, x)t[min
{∇f L(x),∇f U (x)

}
, max

{∇f L(x),∇f U (x)
}]

.
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() On the condition of f L(x) – f L(x) ≤ f U (x) – f U (x), η(x, x)t∇f L(x) ≤ η(x, x)t∇f U (x),
f L(x) – f L(x) ≤ f U (x) – f U (x), and η(x, x)t∇f L(x) ≤ η(x, x)t∇f U (x), we have

f (x) 
g f (x) =
[
f L(x) – f L(x), f U (x) – f U (x)

]
,

f (x) 
g f (x) =
[
f L(x) – f L(x), f U (x) – f U (x)

]

and

η(x, x)t∇f (x) =
[
η(x, x)t∇f L(x),η(x, x)t∇f U (x)

]
,

η(x, x)t∇f (x) =
[
η(x, x)t∇f L(x),η(x, x)t∇f U (x)

]
.

Thus,

f L(x) – f L(x) ≥ η(x, x)t∇f L(x),

f U (x) – f U (x) ≥ η(x, x)t∇f U (x)

and

f L(x) – f L(x) ≥ η(x, x)t∇f L(x),

f U (x) – f U (x) ≥ η(x, x)t∇f U (x).

Therefore,

λf L(x) + ( – λ)f L(x) – f L(x) ≥ (
λη(x, x) + ( – λ)η(x, x)

)t∇f L(x).

However, by Condition C, λη(x, x) + ( – λ)η(x, x) = . Hence,

f L(x + λη(x, x)
) ≤ λf L(x) + ( – λ)f L(x).

By a similar way,

f U(
x + λη(x, x)

) ≤ λf U (x) + ( – λ)f U (x).

Thus f is preinvex with respect to η by Theorem .
() On the condition of f L(x) – f L(x) ≤ f U (x) – f U (x), η(x, x)t∇f L(x) ≤ η(x, x)t∇f U (x),

f L(x) – f L(x) ≤ f U (x) – f U (x), and η(x, x)t∇f L(x) > η(x, x)t∇f U (x), we have

f (x) 
g f (x) =
[
f L(x) – f L(x), f U (x) – f U (x)

]
,

f (x) 
g f (x) =
[
f L(x) – f L(x), f U (x) – f U (x)

]

and

η(x, x)t∇f (x) =
[
η(x, x)t∇f L(x),η(x, x)t∇f U (x)

]
,

η(x, x)t∇f (x) =
[
η(x, x)t∇f U (x),η(xx)t∇f L(x)

]
.
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Thus,

f L(x) – f L(x) ≥ η(x, x)t∇f L(x),

f U (x) – f U (x) ≥ η(x, x)t∇f U (x)

and

f L(x) – f L(x) ≥ η(x, x)t∇f U (x),

f U (x) – f U (x) ≥ η(x, x)t∇f L(x).

Suppose min{η(x, x)t∇f L(x),η(x, x)t f U (x)} = η(x, x)t∇f L(x). Therefore,

λf L(x) + ( – λ)f L(x) – f L(x) ≥ λη(x, x)t∇f L(x) + ( – λ)η(x, x)t∇f U (x)

≥ λη(x, x)t∇f L(x) + ( – λ)η(x, x)t∇f L(x)

=
(
λη(x, x) + ( – λ)η(x, x)

)t∇f L(x).

However, by Condition C, λη(x, x) + ( – λ)η(x, x) = . Hence,

f L(x + λη(x, x)
) ≤ λf L(x) + ( – λ)f L(x).

By a similar way,

f U(
x + λη(x, x)

) ≤ λf U (x) + ( – λ)f U (x).

Thus f is preinvex with respect to η by Theorem .
() On the condition of f L(x) – f L(x) ≤ f U (x) – f U (x), η(x, x)t∇f L(x) ≤ η(x, x)t∇f U (x),

f L(x) – f L(x) > f U (x) – f U (x), and η(x, x)t∇f L(x) ≤ η(x, x)t∇f U (x), we have

f (x) 
g f (x) =
[
f L(x) – f L(x), f U (x) – f U (x)

]
,

f (x) 
g f (x) =
[
f U (x) – f U (x), f L(x) – f L(x)

]

and

η(x, x)t∇f (x) =
[
η(x, x)t∇f L(x),η(x, x)t∇f U (x)

]
,

η(x, x)t∇f (x) =
[
η(x, x)t∇f L(x),η(x, x)t∇f U (x)

]
.

Thus,

f L(x) – f L(x) ≥ η(x, x)t∇f L(x),

f U (x) – f U (x) ≥ η(x, x)t∇f U (x)

and

f L(x) – f L(x) ≥ η(x, x)t∇f U (x),

f U (x) – f U (x) ≥ η(x, x)t∇f L(x).
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Suppose min{η(x, x)t∇f L(x),η(x, x)t∇f U (x)} = η(x, x)t∇f L(x). Thus,

λf L(x) + ( – λ)f L(x) – f L(x) ≥ λη(x, x)t∇f U (x) + ( – λ)η(x, x)t∇f L(x)

≥ λη(x, x)t∇f L(x) + ( – λ)η(x, x)t∇f L(x)

=
(
λη(x, x) + ( – λ)η(x, x)

)t∇f L(x).

However, by Condition C, λη(x, x) + ( – λ)η(x, x) = . Hence,

f L(x + λη(x, x)
) ≤ λf L(x) + ( – λ)f L(x).

By a similar way,

f U(
x + λη(x, x)

) ≤ λf U (x) + ( – λ)f U (x).

Thus f is preinvex with respect to η by Theorem .
() On the condition of f L(x) – f L(x) ≤ f U (x) – f U (x), η(x, x)t∇f L(x) ≤ η(x, x)t∇f U (x),

f L(x) – f L(x) > f U (x) – f U (x), and η(x, x)t∇f L(x) > η(x, x)t∇f U (x), we have

f (x) 
g f (x) =
[
f L(x) – f L(x), f U (x) – f U (x)

]
,

f (x) 
g f (x) =
[
f U (x) – f U (x), f L(x) – f L(x)

]

and

η(x, x)t∇f (x) =
[
η(x, x)t∇f L(x),η(x, x)t∇f U (x)

]
,

η(x, x)t∇f (x) =
[
η(x, x)t∇f U (x),η(x, x)t∇f L(x)

]
.

Thus,

f L(x) – f L(x) ≥ η(x, x)t∇f L(x),

f U (x) – f U (x) ≥ η(x, x)t∇f U (x)

and

f L(x) – f L(x) ≥ η(x, x)t∇f L(x),

f U (x) – f U (x) ≥ η(x, x)t∇f U (x).

Thus,

λf L(x) + ( – λ)f L(x) – f L(x) ≥ (
λη(x, x) + ( – λ)η(x, x)

)t∇f L(x).

However, by Condition C, λη(x, x) + ( – λ)η(x, x) = . Hence,

f L(x + λη(x, x)
) ≤ λf L(x) + ( – λ)f L(x).
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By a similar way,

f U(
x + λη(x, x)

) ≤ λf U (x) + ( – λ)f U (x).

As a consequence, f is preinvex with respect to η by Theorem .
We can prove the result on the other four conditions by a similar way. �

4 The Kuhn-Tucker optimality conditions with interval-valued objective
functions

An interval-valued objective minimization problem is

(IVOP) min f (x) =
[
f L(x), f U (x)

]

subject to gi(x) ≤ , i = , , . . . , m.

Let P = {x ∈ Rn : gi(x) ≤ , i = , , . . . , m} be a feasible set of (IVOP).

Definition  Let x∗ be a feasible solution of the primal problem (IVOP). We say that x∗

is a non-dominated solution of problem (IVOP) if and only if there exists no x ∈ P such
that f (x) ≺ f (x∗). In this case, f (x∗) is called the non-dominated objective value of f .

Theorem  Let f (x) be gH-differentiable on X ⊆ Rn and interval-valued invex with respect
to η : X ×X → Rn, and gi(x) (i = , , . . . , m) be invex with respect to the same η. If there exist
x∗ ∈ P and vi (i = , , . . . , m) such that

{∇f
(
x∗)}L +

n∑

i=

vi∇gi
(
x∗) = , ()

n∑

i=

vigi
(
x∗) = , ()

vi ≥ , ()

then x∗ is a non-dominated solution of problem (IVOP).

Proof For any x∗ ∈ P satisfying gi(x∗) ≤ , i = , , . . . , m, since f (x) is gH-differentiable
on X ⊆ Rn and interval-valued invex with respect to η, then [min{f L(x) – f L(x∗), f U (x) –
f U (x∗)}, max{f L(x) – f L(x∗), f U (x) – f U (x∗)}] � η(x, x∗)t∇f (x∗).

(i) On the condition of min{f L(x) – f L(x∗), f U (x) – f U (x∗)} = f L(x) – f L(x∗), η(x, x∗)t ×
∇f (x∗) = [η(x, x∗)t{∇f (x∗)}L,η(x, x∗)t{∇f (x∗)}U ],

f L(x) – f L(x∗) ≥ η
(
x, x∗)t{∇f

(
x∗)}L

= –η
(
x, x∗)t

n∑

i=

vi∇gi
(
x∗)

≥ –
m∑

i=

vi
(
gi(x) – gi

(
x∗))
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=
m∑

i=

(
–vigi(x) + vigi

(
x∗))

=
m∑

i=

–vigi(x)

≥ .

Thus, f (x) ≺ f (x∗) does not hold.
(ii) On the condition of min{f L(x) – f L(x∗), f U (x) – f U (x∗)} = f U (x) – f U (x∗), η(x, x∗)t ×

∇f (x∗) = [η(x, x∗)t{∇f (x∗)}L,η(x, x∗)t{∇f (x∗)}U ],

f U (x) – f U(
x∗) ≥ η

(
x, x∗)t{∇f

(
x∗)}L

= –η
(
x, x∗)t

n∑

i=

vi∇gi
(
x∗)

≥ –
m∑

i=

vi
(
gi(x) – gi

(
x∗))

=
m∑

i=

(
–vigi(x) + vigi

(
x∗))

=
m∑

i=

–vigi(x)

≥ .

Thus, f (x) ≺ f (x∗) does not hold.
Similarly, we can prove the other two conditions. �

The proof of the following theorem is similar to the one of Theorem .

Theorem  Let f (x) be gH-differentiable on X ⊆ Rn and interval-valued invex with respect
to η : X ×X → Rn, and gi(x) (i = , , . . . , m) be invex with respect to the same η. If there exist
x∗ ∈ P and vi (i = , , . . . , m) such that

{∇f
(
x∗)}U +

n∑

i=

vi∇gi
(
x∗) = , ()

n∑

i=

vigi
(
x∗) = , ()

vi ≥ , ()

then x∗ is a non-dominated solution of problem (IVOP).

Example 

minimize f (x) =
[
x + x + , x + 

]

subject to g(x) = x –  ≤ ,

g(x) = –x –  ≤ .
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From Theorem  we have ∇f (x) = [x, x + ].
(i) It is easy to see that the problem satisfies the assumptions of Theorem . Then

{[
x∗, x∗ + 

]}L + v – v = ,

v
(
x∗ – 

)
= ,

v
(
–x∗ – 

)
= .

We obtain v = v = , and x∗ =  is a non-dominated solution.
(ii) It is easy to see that the problem satisfies the assumptions of Theorem . Then

{[
x∗, x∗ + 

]}U + v – v = ,

v
(
x∗ – 

)
= ,

v
(
–x∗ – 

)
= .

We obtain v = v = , and x∗ = – 
 is also a non-dominated solution.

Example  Consider the following interval-valued programming problem:

minimize f (x) = [, ] sin x

subject to g(x) = (sin x – ) –



≤ ,

x ∈
(

,
π



)
.

Note that functions f and g are invex with respect to

η(x, y) =
sin x – sin y

cos y
.

And ∇f (x) = [ sin x cos x,  sin x cos x], ∇g(x) = (sin x – ) cos x.
It is easy to see that the problem satisfies the assumptions of Theorem . Then

 sin x∗ cos x∗ + v
(
sin x∗ – 

)
cos x∗ = ,

v
((

sin x∗ – 
) –




)
= .

After some algebraic calculations, we obtain x∗ = sin–( – 

√

 ), v = 
√

 – . Therefore,
x∗ = sin–( – 


√

 ) is a non-dominated solution.

The following example also shows the advantages of our method in respect to [].

Example  Consider the following interval-valued programming problem:

minimize f (x) = [x –  sin x, x – sin x + ]

subject to g(x) =  sin x +  sin x + x –  ≤ ,
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g(x) = x + x –  ≤ ,

g(x) = – sin x ≤ ,

g(x) = – sin x ≤ .

Then f is gH-differentiable and weakly differentiable. Since f L is not LU-convex and
f L + f U is not LU-convex, methods in [] cannot be used.

Note that functions f and gi (i = , , , ) are invex with respect to

η(x, y) =
(

sin x – sin y

cos y
,
sin x – sin y

cos y

)t

.

It is easy to see that the problem satisfies the assumptions of Theorem . Then

 + v( cos x + ) + v – v cos x = ,

– cos x + v cos x + v – v cos x = ,

v( sin x +  sin x + x – ) = ,

v(x + x – ) = ,

v(– sin x) = ,

v(– sin x) = .

After some algebraic calculations, we obtain x∗ = (, sin– 
 )t , v = ( 

 , , 
 , )t . Therefore,

x∗ is a non-dominated solution.

5 Conclusion
The concept of convex interval-valued mappings has been studied in the literature by
many researchers. The aim of this paper is to introduce the concept of invex interval-
valued mappings with gH-differentiable functions. Then we discussed the relationships
between interval-valued invex mappings and interval-valued weakly invex mappings. Fi-
nally, the sufficient optimality condition for interval-valued objective functions has been
derived under invexity.
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