2,955 research outputs found
Mechanisms and Observations of Coronal Dimming for the 2010 August 7 Event
Coronal dimming of extreme ultraviolet (EUV) emission has the potential to be
a useful forecaster of coronal mass ejections (CMEs). As emitting material
leaves the corona, a temporary void is left behind which can be observed in
spectral images and irradiance measurements. The velocity and mass of the CMEs
should impact the character of those observations. However, other physical
processes can confuse the observations. We describe these processes and the
expected observational signature, with special emphasis placed on the
differences. We then apply this understanding to a coronal dimming event with
an associated CME that occurred on 2010 August 7. Data from the Solar Dynamics
Observatory's (SDO) Atmospheric Imaging Assembly (AIA) and EUV Variability
Experiment (EVE) are used for observations of the dimming, while the Solar and
Heliospheric Observatory's (SOHO) Large Angle and Spectrometric Coronagraph
(LASCO) and the Solar Terrestrial Relations Observatory's (STEREO) COR1 and
COR2 are used to obtain velocity and mass estimates for the associated CME. We
develop a technique for mitigating temperature effects in coronal dimming from
full-disk irradiance measurements taken by EVE. We find that for this event,
nearly 100% of the dimming is due to mass loss in the corona
Scaling of Horizontal and Vertical Fixational Eye Movements
Eye movements during fixation of a stationary target prevent the adaptation
of the photoreceptors to continuous illumination and inhibit fading of the
image. These random, involuntary, small, movements are restricted at long time
scales so as to keep the target at the center of the field of view. Here we use
the Detrended Fluctuation Analysis (DFA) in order to study the properties of
fixational eye movements at different time scales. Results show different
scaling behavior between horizontal and vertical movements. When the small
ballistics movements, i.e. micro-saccades, are removed, the scaling exponents
in both directions become similar. Our findings suggest that micro-saccades
enhance the persistence at short time scales mostly in the horizontal component
and much less in the vertical component. This difference may be due to the need
of continuously moving the eyes in the horizontal plane, in order to match the
stereoscopic image for different viewing distance.Comment: 5 pages, 4 figure
Probing microscopic origins of confined subdiffusion by first-passage observables
Subdiffusive motion of tracer particles in complex crowded environments, such
as biological cells, has been shown to be widepsread. This deviation from
brownian motion is usually characterized by a sublinear time dependence of the
mean square displacement (MSD). However, subdiffusive behavior can stem from
different microscopic scenarios, which can not be identified solely by the MSD
data. In this paper we present a theoretical framework which permits to
calculate analytically first-passage observables (mean first-passage times,
splitting probabilities and occupation times distributions) in disordered media
in any dimensions. This analysis is applied to two representative microscopic
models of subdiffusion: continuous-time random walks with heavy tailed waiting
times, and diffusion on fractals. Our results show that first-passage
observables provide tools to unambiguously discriminate between the two
possible microscopic scenarios of subdiffusion. Moreover we suggest experiments
based on first-passage observables which could help in determining the origin
of subdiffusion in complex media such as living cells, and discuss the
implications of anomalous transport to reaction kinetics in cells.Comment: 21 pages, 3 figures. Submitted versio
The role of microtubule movement in bidirectional organelle transport
We study the role of microtubule movement in bidirectional organelle
transport in Drosophila S2 cells and show that EGFP-tagged peroxisomes in cells
serve as sensitive probes of motor induced, noisy cytoskeletal motions.
Multiple peroxisomes move in unison over large time windows and show
correlations with microtubule tip positions, indicating rapid microtubule
fluctuations in the longitudinal direction. We report the first high-resolution
measurement of longitudinal microtubule fluctuations performed by tracing such
pairs of co-moving peroxisomes. The resulting picture shows that
motor-dependent longitudinal microtubule oscillations contribute significantly
to cargo movement along microtubules. Thus, contrary to the conventional view,
organelle transport cannot be described solely in terms of cargo movement along
stationary microtubule tracks, but instead includes a strong contribution from
the movement of the tracks.Comment: 24 pages, 5 figure
Nonlinearity-induced conformational instability and dynamics of biopolymers
We propose a simple phenomenological model for describing the conformational
dynamics of biopolymers via the nonlinearity-induced buckling and collapse
(i.e. coiling up) instabilities. Taking into account the coupling between the
internal and mechanical degrees of freedom of a semiflexible biopolymer chain,
we show that self-trapped internal excitations (such as amide-I vibrations in
proteins, base-pair vibrations in DNA, or polarons in proteins) may produce the
buckling and collapse instabilities of an initially straight chain. These
instabilities remain latent in a straight infinitely long chain, because the
bending of such a chain would require an infinite energy. However, they
manifest themselves as soon as we consider more realistic cases and take into
account a finite length of the chain. In this case the nonlinear localized
modes may act as drivers giving impetus to the conformational dynamics of
biopolymers. The buckling instability is responsible, in particular, for the
large-amplitude localized bending waves which accompany the nonlinear modes
propagating along the chain. In the case of the collapse instability, the chain
folds into a compact three-dimensional coil. The viscous damping of the aqueous
environment only slows down the folding of the chain, but does not stop it even
for a large damping. We find that these effects are only weakly affected by the
peculiarities of the interaction potentials, and thus they should be generic
for different models of semiflexible chains carrying nonlinear localized
excitations.Comment: 4 pages (RevTeX) with 5 figures (EPS
Tension Dynamics and Linear Viscoelastic Behavior of a Single Semiflexible Polymer Chain
We study the dynamical response of a single semiflexible polymer chain based
on the theory developed by Hallatschek et al. for the wormlike-chain model. The
linear viscoelastic response under oscillatory forces acting at the two chain
ends is derived analytically as a function of the oscillation frequency . We
shall show that the real part of the complex compliance in the low frequency
limit is consistent with the static result of Marko and Siggia whereas the
imaginary part exhibits the power-law dependence +1/2. On the other hand, these
compliances decrease as the power law -7/8 for the high frequency limit. These
are different from those of the Rouse dynamics. A scaling argument is developed
to understand these novel results.Comment: 23 pages, 6 figure
Elastic deformation of a fluid membrane upon colloid binding
When a colloidal particle adheres to a fluid membrane, it induces elastic
deformations in the membrane which oppose its own binding. The structural and
energetic aspects of this balance are theoretically studied within the
framework of a Helfrich Hamiltonian. Based on the full nonlinear shape
equations for the membrane profile, a line of continuous binding transitions
and a second line of discontinuous envelopment transitions are found, which
meet at an unusual triple point. The regime of low tension is studied
analytically using a small gradient expansion, while in the limit of large
tension scaling arguments are derived which quantify the asymptotic behavior of
phase boundary, degree of wrapping, and energy barrier. The maturation of
animal viruses by budding is discussed as a biological example of such
colloid-membrane interaction events.Comment: 14 pages, 9 figures, REVTeX style, follow-up on cond-mat/021242
- …
