39 research outputs found

    Adenylate cyclase from synchronized neuroblastoma cells: responsiveness to prostaglandin E1, adenosine, and dopamine during the cell cycle.

    No full text
    Neuroblastoma cells were synchronized by a combined isoleucine plus glutamine starvation. Adenylate cyclase activity [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] was measured under basal conditions and in the presence of dopamine, adenosine and prostaglandin (PG) E1. A clear dissociation occurred between the respective evolution patterns of basal and agonist-stimulated adenylate cyclase activities. The magnitudes of the enzyme response to PGE1, adenosine, and dopamine also exhibited different evolution patterns during the cell cycle. Evolution of adenylate cyclase responsiveness to PGE1 during the cell cycle exhibited striking similarities with the intracellular 3':5'-cyclic AMP changes observed elsewhere. Use of theophylline and fluphenazine as specific inhibitors of adenosine and dopamine, respectively, made it possible to demonstrate that adenosine, dopamine, and PGE1 stimulated adenylate cyclase through independent receptor sites. Furthermore, whatever the stage of the cell cycle, responses to these three agonists were not additive, indicating that the receptors of adenosine, dopamine, and PGE1 control the same adenylate cyclase moieties. The data suggest that adenylate cyclase cell content and enzyme responsiveness to specific agonists can be independently controlled

    Angiotensin receptors from rat liver, brain and pituitary gland. Expression of two subtypes in Xenopus oocytes.

    No full text
    Xenopus laevis oocytes were used to express angiotensin receptors encoded by mRNAs extracted from rat liver, adenohypophysis and brain. Groups of ten mRNA-injected oocytes were loaded with 45Ca2+ and the responsiveness to angiotensin II (A II) and related molecules tested by monitoring 45Ca2+ outflux. A II and angiotensin III (A III) induced a marked and transient increase in 45Ca2+ outflux from mRNA, but not from control, water-injected, oocytes. The increase over basal value of 45Ca2+ outflux during a 5 min application period of A II or A III was used as a response index. Observed responses were of high magnitude, reproducible and dose-dependent. For these reasons, mRNA-injected oocytes constitute a valuable system for investigating the pharmacological properties of angiotensin receptors from tissues of different origin under experimental conditions which eliminate tissue-specific interference which might be encountered in classical binding studies on acellular preparations. We demonstrate a fairly good parallelism between the relative potencies of A I, A II and A III in eliciting an increase in 45Ca2+ outflux from liver and adenohypophyseal mRNA-injected oocytes and the relative affinities of these peptides for binding to liver or adenohypophyseal membranes (A II greater than A III much greater than A I). The predominant receptor subtype expressed by brain mRNA discriminated very poorly between A II and A III, whereas angiotensin receptors expressed by liver or adenohypophyseal mRNA discriminated between AII and AIII very efficiently

    Oxytocin receptors from LLC-PK1 cells: expression in Xenopus oocytes

    No full text
    corecore