25,893 research outputs found
Higgs boson production with one bottom quark including higher-order soft-gluon corrections
A Higgs boson produced in association with one or more bottom quarks is of
great theoretical and experimental interest to the high-energy community. A
precise prediction of its total and differential cross-section can have a great
impact on the discovery of a Higgs boson with large bottom-quark Yukawa
coupling, like the scalar (h^0 and H^0) and pseudoscalar (A^0) Higgs bosons of
the Minimal Supersymmetric Standard Model (MSSM) in the region of large
\tan\beta. In this paper we apply the threshold resummation formalism to
determine both differential and total cross-sections for b g \to b\Phi (where
\Phi = h^0, H^0), including up to next-to-next-to-next-to-leading order (NNNLO)
soft plus virtual QCD corrections at next-to-leading logarithmic (NLL)
accuracy. We present results for both the Fermilab Tevatron and the CERN Large
Hadron Collider (LHC).Comment: revtex4, 13 pages, 11 figures; new references and additional comment
Jets associated with Z^0 boson production in heavy-ion collisions at the LHC
The heavy ion program at the LHC will present unprecedented opportunities to
probe hot QCD matter, that is, the quark gluon plasma (QGP). Among these
exciting new probes are high energy partons associated with the production of a
Z^0 boson, or Z^0 tagged jets. Once produced, Z^0 bosons are essentially
unaffected by the strongly interacting medium produced in heavy-ion collisions,
and therefore provide a powerful signal of the initial partonic energy and
subsequent medium induced partonic energy loss. When compared with theory,
experimental measurements of Z^0 tagged jets will help quantify the jet
quenching properties of the QGP and discriminate between different partonic
energy loss formalisms. In what follows, I discuss the advantages of tagged
jets over leading particles, and present preliminary results of the production
and suppression of Z^0 tagged jets in relativistic heavy-ion collisions at LHC
energies using the Guylassy-Levai-Vitev (GLV) partonic energy loss formalism.Comment: To appear in the proceedings of the 2010 Winter Workshop on Nuclear
Dynamics, which was held in Ocho Rios, Jamaica, mon
A Toy Model of Flying Snake's Glide
We have developed a toy model of flying snake's glide [J.J. Socha, Nature
vol. 418 (2002) 603.] by modifying a model for a falling paper. We have found
that asymmetric oscillation is a key about why snake can glide. Further
investigation for snake's glide will provide us details about how it can glide
without a wing.Comment: 6 pages, to be submitted to J. Phys. Soc. Jpn. Revised Version
submitted to the abov
Scalability tests of R-GMA-based grid job monitoring system for CMS Monte Carlo data production
Copyright @ 2004 IEEEHigh-energy physics experiments, such as the compact muon solenoid (CMS) at the large hadron collider (LHC), have large-scale data processing computing requirements. The grid has been chosen as the solution. One important challenge when using the grid for large-scale data processing is the ability to monitor the large numbers of jobs that are being executed simultaneously at multiple remote sites. The relational grid monitoring architecture (R-GMA) is a monitoring and information management service for distributed resources based on the GMA of the Global Grid Forum. We report on the first measurements of R-GMA as part of a monitoring architecture to be used for batch submission of multiple Monte Carlo simulation jobs running on a CMS-specific LHC computing grid test bed. Monitoring information was transferred in real time from remote execution nodes back to the submitting host and stored in a database. In scalability tests, the job submission rates supported by successive releases of R-GMA improved significantly, approaching that expected in full-scale production
Relativistic Precessing Jets and Cosmological Gamma Ray Bursts
We discuss the possibility that gamma-ray bursts may result from cosmological
relativistic blob emitting neutron star jets that precess past the line of
sight. Beaming reduces the energy requirements, so that the jet emission can
last longer than the observed burst duration. One precession mode maintains a
short duration time scale, while a second keeps the beam from returning to the
line of sight, consistent with the paucity of repeaters. The long life of these
objects reduces the number required for production as compared to short lived
jets. Blobs can account for the time structure of the bursts. Here we focus
largely on kinematic and time scale considerations of beaming, precession, and
blobs--issues which are reasonably independent of the acceleration and jet
collimation mechanisms. We do suggest that large amplitude electro-magnetic
waves could be a source of blob acceleration.Comment: 15 pages, plain TeX, accepted to ApJ
Ohm's Law for a Relativistic Pair Plasma
We derive the fully relativistic Ohm's law for an electron-positron plasma.
The absence of non-resistive terms in Ohm's law and the natural substitution of
the 4-velocity for the velocity flux in the relativistic bulk plasma equations
do not require the field gradient length scale to be much larger than the
lepton inertial lengths, or the existence of a frame in which the distribution
functions are isotropic.Comment: 12 pages, plain TeX, Phys. Rev. Lett. 71 3481 (1993
Evolutionary origins and specialisation of membrane transport
From unicellular protists to the largest megafauna and flora, all eukaryotes depend upon the organelles and processes of the intracellular membrane trafficking system. Well-defined machinery selectively packages and delivers material between endomembrane organelles and imports and exports material from the cell surface. This process underlies intracellular compartmentalization and facilitates myriad processes that define eukaryotic biology. Membrane trafficking is a landmark in the origins of the eukaryotic cell and recent work has begun to unravel how the revolution in cellular structure occurred.</p
Learning through social spaces: migrant women and lifelong learning in post-colonial London
This article shows how migrant women engage in learning through social spaces. It argues that such spaces are little recognised, and that there are multiple ways in which migrant women construct and negotiate their informal learning through socialising with other women in different informal modes. Additionally, the article shows how learning is shaped by the socio-political, geographical and multicultural context of living in London, outlining ways in which gendered and racialised identities shape, construct and constrain participation in lifelong learning. The article shows that one way in which migrant women resist (post)colonial constructions of difference is by engaging in informal and non-formal lifelong learning, arguing that the benefits are (at least) two-fold. The women develop skills (including language skills) but also use their informal learning to develop what is referred to in this article as 'relational capital'. The article concludes that informal lifelong learning developed through social spaces can enhance a sense of belonging for migrant women
Plastic Flow, Voltage Bursts, and Vortex Avalanches in Superconductors
We use large-scale parallel simulations to compute the motion of
superconducting magnetic vortices during avalanches triggered by small field
increases. We find that experimentally observable voltage bursts correspond to
pulsing vortex movement along branched channels or winding chains, and relate
vortex flow images to features of statistical distributions. As pin density is
increased, a crossover occurs from interstitial motion in narrow easy-flow
winding channels with typical avalanche sizes, to pin-to-pin motion in broad
channels, characterized by a very broad distribution of sizes. Our results are
consistent with recent experiments.Comment: 4 pages, Latex, 4 figures included. Movies available at
http://www-personal.engin.umich.edu/~nor
- …
