9,456 research outputs found

    Why frequencies are natural

    Get PDF
    Research in mathematical cognition has shown that rates, and other interpretations of x/y, are hard to learn and understand. On the other hand, there is extensive evidence that the brain is endowed with a specialized mechanism for representing and manipulating the numerosities of sets – that is, frequencies. Hence, base-rates are neglected precisely because they are rates, whereas frequencies are indeed natural

    State-of-Science review: learning difficulties: SR-D4: Dyscalculia

    Get PDF
    Low numeracy skills in general and developmental dyscalculia (DD) in particular constitute a severe handicap. This review examines the causes and behavioural manifestations of numeracy deficits, their neuropsychological correlates and the limits to our understanding of these conditions. It then goes on to describe a validated test for diagnosing DD – a specific impairment in the capacity to learn arithmetic. The challenges in educating DD children and analysing their particular intervention needs are described. Reference is also made to the impact of dyscalculia on mental health (and ill-health) and individual wellbeing

    The CEDAR Project

    Full text link
    We describe the plans and objectives of the CEDAR project (Combined e-Science Data Analysis Resource for High Energy Physics) newly funded by the PPARC e-Science programme in the UK. CEDAR will combine the strengths of the well established and widely used HEPDATA database of HEP data and the innovative JetWeb data/Monte Carlo comparison facility, built on the HZTOOL package, and will exploit developing grid technology. The current status and future plans of both of these individual sub-projects within the CEDAR framework are described, showing how they will cohesively provide (a) an extensive archive of Reaction Data, (b) validation and tuning of Monte Carlo programs against these reaction data sets, and (c) a validated code repository for a wide range of HEP code such as parton distribution functions and other calculation codes used by particle physicists. Once established it is envisaged CEDAR will become an important Grid tool used by LHC experimentalists in their analyses and may well serve as a model in other branches of science where there is a need to compare data and complex simulations.Comment: 4 pages, 4 postscript figures, uses CHEP2004.cls. Presented at Computing in High-Energy Physics (CHEP'04), Interlaken, Switzerland, 27th September - 1st October 200

    Jet Trimming

    Get PDF
    Initial state radiation, multiple interactions, and event pileup can contaminate jets and degrade event reconstruction. Here we introduce a procedure, jet trimming, designed to mitigate these sources of contamination in jets initiated by light partons. This procedure is complimentary to existing methods developed for boosted heavy particles. We find that jet trimming can achieve significant improvements in event reconstruction, especially at high energy/luminosity hadron colliders like the LHC.Comment: 20 pages, 11 figures, 3 tables - Minor changes to text/figure

    Search for the Elusive Higgs Boson Using Jet Structure at LHC

    Full text link
    We consider the production of a light non-standard model Higgs boson of order 100~\GEV with an associated WW boson at CERN Large Hadron Collider. We focus on an interesting scenario that, the Higgs boson decays predominately into two light scalars χ\chi with mass of few GeV which sequently decay into four gluons, i.e. h2χ4gh\to 2\chi \to 4g. Since χ\chi is much lighter than the Higgs boson, it will be highly boosted and its decay products, the two gluons, will move close to each other, resulting in a single jet for χ\chi decay in the detector. By using electromagnetic calorimeter-based and jet substructure analyses, we show in two cases of different χ\chi masses that it is quite promising to extract the signal of Higgs boson out of large QCD background.Comment: 20 pages, 7 figure

    HepData and JetWeb: HEP data archiving and model validation

    Get PDF
    The CEDAR collaboration is extending and combining the JetWeb and HepData systems to provide a single service for tuning and validating models of high-energy physics processes. The centrepiece of this activity is the fitting by JetWeb of observables computed from Monte Carlo event generator events against their experimentally determined distributions, as stored in HepData. Caching the results of the JetWeb simulation and comparison stages provides a single cumulative database of event generator tunings, fitted against a wide range of experimental quantities. An important feature of this integration is a family of XML data formats, called HepML.Comment: 4 pages, 0 figures. To be published in proceedings of CHEP0

    The NF-κB subunit c-Rel regulates Bach2 tumour suppressor expression in B-cell lymphoma

    No full text
    The REL gene, encoding the NF-κB subunit c-Rel, is frequently amplified in B-cell lymphoma and functions as a tumour-promoting transcription factor. Here we report the surprising result that c-rel–/– mice display significantly earlier lymphomagenesis in the c-Myc driven, Eμ-Myc model of B-cell lymphoma. c-Rel loss also led to earlier onset of disease in a separate TCL1-Tg-driven lymphoma model. Tumour reimplantation experiments indicated that this is an effect intrinsic to the Eμ-Myc lymphoma cells but, counterintuitively, c-rel–/– Eμ-Myc lymphoma cells were more sensitive to apoptotic stimuli. To learn more about why loss of c-Rel led to earlier onset of disease, microarray gene expression analysis was performed on B cells from 4-week-old, wild-type and c-rel–/– Eμ-Myc mice. Extensive changes in gene expression were not seen at this age, but among those transcripts significantly downregulated by the loss of c-Rel was the B-cell tumour suppressor BTB and CNC homology 2 (Bach2). Quantitative PCR and western blot analysis confirmed loss of Bach2 in c-Rel mutant Eμ-Myc tumours at both 4 weeks and the terminal stages of disease. Moreover, Bach2 expression was also downregulated in c-rel–/– TCL1-Tg mice and RelA Thr505Ala mutant Eμ-Myc mice. Analysis of wild-type Eμ-Myc mice demonstrated that the population expressing low levels of Bach2 exhibited the earlier onset of lymphoma seen in c-rel–/– mice. Confirming the relevance of these findings to human disease, analysis of chromatin immunoprecipitation sequencing data revealed that Bach2 is a c-Rel and NF-κB target gene in transformed human B cells, whereas treatment of Burkitt's lymphoma cells with inhibitors of the NF-κB/IκB kinase pathway or deletion of c-Rel or RelA resulted in loss of Bach2 expression. These data reveal a surprising tumour suppressor role for c-Rel in lymphoma development explained by regulation of Bach2 expression, underlining the context-dependent complexity of NF-κB signalling in cancer

    KtJet: A C++ implementation of the Kt clustering algorithm

    Get PDF
    A C++ implementation of the Kt jet algorithm for high energy particle collisions is presented. The time performance of this implementation is comparable to the widely used Fortran implementation. Identical algorithmic functionality is provided, with a clean and intuitive user interface and additional recombination schemes. A short description of the algorithm and examples of its use are given
    corecore