
way to demonstrate they are not is to simply note that the same
theorists (Gigerenzer, Cosmides, and Tooby) are repeatedly
invoked for all of the first three frameworks.

The longer demonstration is to dismantle these accounts
sequentially. There is the “Mind as Swiss army knife” framework
that is distinguished by unavailability to conscious awareness or
deliberate control (cognitive impenetrability), and then there is
the “Natural frequency algorithm” framework that is information-
ally encapsulated. But wait; those distinguishing characteristics are
actually imposed by others (e.g., Fodor 1983) and rejected by the
actual theorists under consideration here (e.g., Cosmides & Tooby
2003; Duchaine et al. 2001; Ermer et al. 2007; Tooby et al. 2005;
Tooby & Cosmides 2005). The first and second theoretical frame-
works therefore collapse into a third one.

The third framework (incorporating the previous two), is a
“Natural frequency heuristic” account, and is probably closest
to the one actual and appropriate opposing view for B&S. The
fourth framework (“Non-evolutionary natural frequency heuris-
tic”) suggests that an appropriate position is to willfully disregard
all evolutionary factors that have influenced the structure and
function of the human mind. One can question the nature of
the cognitive structures generated by evolutionary selection
pressures, but it is not scientifically legitimate to simply deny
evolution and replace viable evolutionary explanations with
“one way or another, people can appreciate and use [natural
sampling]” and that somehow “gives rise to” Bayesian reasoning
(sect. 1.2.4). Such vague descriptive explanations would have
effectively stagnated our understanding of visual processing or
language acquisition, and will have that effect on other cognitive
phenomena if unchecked.

This leaves us with two real frameworks, the final “nested sets/
dual processes” framework and an ecological rationality frame-
work – the two frameworks of the target article’s title. It is not
so much that there is no possibility of other frameworks, but
rather, that the ones described by B&S are not useful.

The empirical literature. Having constructed artificial required
properties for the theoretical frameworks of others, B&S then
tout the inability of those shackled frameworks to account for
empirical results. As easy as this should be, given such a set up,
it is nevertheless seriously flawed. Due to space constraints,
I focus here on how my own research is considered within this
target article. B&S use the findings of Brase et al. (2006) to
support a claim that “Bayesian inference depends on domain
general cognitive processes” that are strategically employed
(sect. 2.1). This was not the original purpose, findings, or
conclusions of our work – and for good reason. As B&S note in
that very same section, there have been differences in absolute
performance levels on Bayesian reasoning tasks, when
comparing across research programs. These different research
programs, however, had used different participants and
different methods for obtaining those participants (e.g., paid
versus classroom activity participation). Brase et al. (2006)
sought to determine the effects of participant selection and
recruitment methods on performance on such tasks, and found
that there were, indeed, significant effects that were capable of
accounting for all the differences in previous works. In
summary, B&S make a confusion between performance and
competence (Chomsky 1965) when they try to infer cognitive
abilities and structures from data showing that incentives affect
performance (see also Crespi 1942; 1944).

There also appears to be some confusion about the nature of
natural sampling and natural frequencies (i.e., naturally
sampled frequencies). The use of a consistent reference class
(sect. 2.3), also called using a partitive structure, nested sets, or
subset relations, are all linguistic twists on what is, in fact,
natural sampling (a point made many times by myself and
others; Brase 2002a; 2002b; Brase & Barbey 2006; Gigerenzer
& Hoffrage 1999; Hoffrage et al. 2002). Natural sampling
refers to the sequential acquisition of information (as in a

natural environment) along with categorization of that infor-
mation into meaningful, often overlapping, groups (see Brase
et al. 1998 for some limitations on easily constructible
categories.).

This confusion is starkly illustrated when B&S try to re-define
the numerical formats used in Brase (2002b). First, natural fre-
quencies are equated with simple frequencies by providing an
incorrect example of the former (this example belongs to B&S
and is not, as they claim, an inconsistency with the literature
on the part of Brase 2002b). In direct contradiction to B&S, a
single numerical statement such as the simple frequencies used
in Brase (2002b) cannot be identified as having a natural
sampling structure. Second, B&S point out – correctly – that
percentages can express single-event probabilities, but they
then carry this too far in concluding that this is the only thing
that probabilities can express. Indeed, as pointed out in Brase
(2002b), percentages are also referred to as “relative frequencies”
because they can be understood as frequencies that are normal-
ized to a reference class of 100 (e.g., as when one says “90% of my
students understand this topic”).

With B&S having misconstrued natural frequencies into
simple frequencies, and misconstrued relative frequencies into
probabilities, it is almost possible to claim that the results of
Brase (2002b) indicate that single event probabilities are per-
ceived equally well compared to natural frequencies. The
remaining necessary manipulation is for B&S to also completely
omit the other numerical format conditions used in Brase
(2002b), which included actual single-event probabilities (and,
no, these actual single-event probabilities were not understood
as well or clearly as simple frequencies and relative frequencies).

Why frequencies are natural
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Abstract: Research in mathematical cognition has shown that rates, and
other interpretations of x/y, are hard to learn and understand. On
the other hand, there is extensive evidence that the brain is endowed
with a specialized mechanism for representing and manipulating
the numerosities of sets – that is, frequencies. Hence, base-rates are
neglected precisely because they are rates, whereas frequencies are
indeed natural.

Barbey & Sloman (B&S) are to be congratulated for laying out
the explanations for base-rate neglect so clearly and systemati-
cally. However, to a researcher not from the field of normative
rationality research, but from the field of mathematical cognition,
it is surprising that none of the explanations make reference
to what is known about how we process numerical quantities
(Butterworth 2001). From this perspective, another type of
explanation can be proposed for base-rate neglect. It is in the
word “rate.” Rates can be expressed formally as x/y, and it is
well known from research in mathematical cognition and edu-
cation that humans are very bad at understanding x/y however
it is interpreted – as a fraction, as a proportion, or as a rate.
For example, it is well known that children find it hard to learn
and understand fractions and simple operations on them
(Bright et al. 1988; Hartnett & Gelman 1998; Mack 1995;
Smith et al. 2005). It has also been found that most third and
fourth graders cannot order fractions by size and cannot
explain why there are two numbers in a given fraction (Smith
et al. 2005). In particular, they seem to have trouble getting
away from whole numbers – for example, when they say that
1/56 is smaller than 1/75 because 56 is smaller than 75
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(Stafylidou & Vosniadou 2004). This has been called “whole
number bias” (Ni & Zhou 2005) and can be found in adults as
well as children (Bonato et al., in press). Whole number bias is
not simply a function of the symbolic form of the rate, for
example, 3/5, because it appears also in non-symbolic formats
such as arrays of dots (Fabbri et al., submitted).

The advantage of presentations in terms of frequencies, and
therefore of whole numbers, rather than rates, again is well sup-
ported by research in mathematical cognition. This has nothing
to do with the relative computational simplicity of representing
the problem in terms of frequencies as compared with rate-based
Bayesian formulations; rather, it has to do with the fact that the
human brain is configured from birth to represent sets and their
numerosities. Infants can discriminate small sets on the basis of
their numerosity (Antell & Keating 1983; Starkey & Cooper
1980; Wynn et al. 2002). This seems to be an inherited capacity
since other primates can do the same in the wild (Hauser et al.
1996), and can learn to do it relatively easily (Brannon & Terrace
2000). Indeed, monkeys readily learn to select the larger of two
numerosities (Brannon & Terrace 1998; Matsuzawa 1985).

These primate capacities are not merely analogous to those of
humans, but appear to have been inherited from a common
ancestral system. Evidence for this comes from recent research
showing that the primate brain areas for numerosity processing
are homologous to human brain areas. Studies have demon-
strated that the intraparietal sulcus (IPS) in humans processes
the numerosities of sets (Piazza et al. 2002). It has recently
been demonstrated that when monkeys are required to remem-
ber the numerosity of a set before matching to sample, the hom-
ologous IPS brain area is active (Nieder 2005). This is evidence
that we have inherited the core of our system from the common
ancestor of humans and macaques.

The concept of the numerosity of a set is abstract, because sets
logically contain any type of member that can be individuated.
Members need not be visible objects, and they need not be sim-
ultaneously present. It turns out that the human numerosity
system in the IPS responds when members of the set are distrib-
uted as a sequence in time or simultaneously distributed in a
spatial array (Castelli et al. 2006) and for auditory as well as
visual sets (Piazza et al. 2006). Indeed, the neural process of
extracting numerosity from sets of visible objects appears to be
entirely automatic, since repeated presentation of different sets
with same numerosity produces a reduction in neural firing in
the IPS, called “adaptation,” even when numerosity is task-irrele-
vant (Cantlon et al. 2006; Piazza et al. 2004; 2007).

“Frequency” is just a way of referring to this numerosity prop-
erty of a set, and so it too is natural. ”Natural sampling” can be
interpreted to be a way of making an estimate of numerosity
when the set is distributed in time or in space. Humans and
other species are born with the capacity to make these estimates
of the approximate size of a set, using a specialized brain system
probably related to the system for exact numerosities. This
system also responds to environmental stimuli in rapid and auto-
matic manner (Cantlon et al. 2006; Dehaene et al. 1999; Lemer
et al. 2003; Piazza et al. 2004). So natural sampling too is natural,
in the sense that it depends on an innate system.

B&S note that accounts involving specialized modules (Cos-
mides & Tooby 1996), specialized frequency algorithms (Giger-
enzer & Hoffrage 1995), or specialized frequency heuristics
(Gigerenzer & Hoffrage 1995; Tversky & Kahneman 1974)
appeal to evolution. However, these claims depend on general
arguments about ecological rationality rather than on specific
facts about the evolution of dedicated neural system. On the
other hand, there is a clear account, well supported by a range
of evidence, as I have indicated, for the evolution of numerosity
processing. Indeed, the evidence suggests that numerosity pro-
cessing is a classic Fodorian cognitive module: domain-specific,
automatic, with a dedicated brain system, and innate (though
Fodor himself cites the number domain as the responsibility of
classic central processes; cf. Fodor 1983). Therefore, the critical

difference between normative Bayesian reasoning and actual
human preferences for sets and their frequencies appears to be
rooted in the evolution of a specialized “number module” for pro-
cessing numerosities (Butterworth 1999). As far as I know, there
is no comparable evolutionary account of a specialized brain
system for x/y.

Base-rate is neglected because rates are neglected.

Nested sets and base-rate neglect: Two types
of reasoning?
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Abstract: Barbey & Sloman (B&S) claim that frequency formats and
other task manipulations induce people to substitute associative
thinking for rule-based thinking about nested sets. My critique focuses
on the substitution assumption. B&S demonstrate that nested sets are
important to solve base-rate problems but they do not show that
thinking about these nested sets relies on a different type of reasoning.

In the target article, Barbey & Sloman (B&S) argue against
various versions of the popular natural frequency heuristic and
claim that the best account of the data should be framed in
terms of a dual-process model of judgment. Base-rate neglect
with the standard problem format is attributed to the pervasive-
ness of the associative system. Frequency versions and other
reviewed task manipulations are argued to boost performance
because they would induce people to substitute associative
thinking for rule-based thinking. Although I am sympathetic to
the basic rationale behind the B&S framework, I want to
point out that it lacks support for the crucial substitution
assumption. The authors nicely clarify that representations in
terms of nested sets reduce base-rate neglect but they do not
show that thinking about these nested sets relies on a different
type of reasoning. Such a claim requires an examination of the
processing characteristics of the two postulated modes of
thinking.

One of the core characteristics of rule-based reasoning is that it
draws on executive, working-memory resources, whereas associ-
ative thinking is more automatic in nature (e.g., Stanovich &
West 2000). If the good performance on the frequency versions
is due to a switch to rule-based reasoning, one would at least
need to show that people recruit executive resources when
they solve the frequency versions. This would demonstrate that
the kind of thinking that is triggered by the frequency format
exhibits the hallmark of rule-based thinking.

The good news is that B&S’s model leads to some clear-cut,
testable predictions. It is not hard to see, for example, how the
substitution claim could be directly tested in a dual-task study
(e.g., see De Neys 2006a; 2006b, for a related approach). B&S
argue that in the vast majority of cases people rely on automatic,
associative thinking to solve the standard probability format pro-
blems. Hence, burdening peoples’ working-memory resources
while they solve the probability versions should hardly affect
their responses any further. However, if the frequency versions
indeed trigger executive-demanding, rule-based processing,
then the good performance on Bayesian inference problems
with frequency formats should decrease under concurrent
working-memory load (i.e., show a larger decrease than with
standard probability formats). Note that the natural frequency
accounts make the exact opposite prediction because they attri-
bute the good performance on the modified versions to the
recruitment of an automatically operating, module-based
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