3,533 research outputs found
An advanced technology space station for the year 2025, study and concepts
A survey was made of potential space station missions that might exist in the 2020 to 2030 time period. Also, a brief study of the current state-of-the-art of the major subsystems was undertaken, and trends in technologies that could impact the subsystems were reviewed. The results of the survey and study were then used to arrive at a conceptual design of a space station for the year 2025. Factors addressed in the conceptual design included requirements for artificial gravity, synergies between subsystems, and the use of robotics. Suggestions are made relative to more in-depth studies concerning the conceptual design and alternative configurations
A Topos Perspective on State-Vector Reduction
A preliminary investigation is made of possible applications in quantum
theory of the topos formed by the collection of all -sets, where is a
monoid. Earlier results on topos aspects of quantum theory can be rederived in
this way. However, the formalism also suggests a new way of constructing a
`neo-realist' interpretation of quantum theory in which the truth values of
propositions are determined by the actions of the monoid of strings of finite
projection operators. By these means, a novel topos perspective is gained on
the concept of state-vector reduction
Topos-Theoretic Extension of a Modal Interpretation of Quantum Mechanics
This paper deals with topos-theoretic truth-value valuations of quantum
propositions. Concretely, a mathematical framework of a specific type of modal
approach is extended to the topos theory, and further, structures of the
obtained truth-value valuations are investigated. What is taken up is the modal
approach based on a determinate lattice \Dcal(e,R), which is a sublattice of
the lattice \Lcal of all quantum propositions and is determined by a quantum
state and a preferred determinate observable . Topos-theoretic extension
is made in the functor category \Sets^{\CcalR} of which base category
\CcalR is determined by . Each true atom, which determines truth values,
true or false, of all propositions in \Dcal(e,R), generates also a
multi-valued valuation function of which domain and range are \Lcal and a
Heyting algebra given by the subobject classifier in \Sets^{\CcalR},
respectively. All true propositions in \Dcal(e,R) are assigned the top
element of the Heyting algebra by the valuation function. False propositions
including the null proposition are, however, assigned values larger than the
bottom element. This defect can be removed by use of a subobject
semi-classifier. Furthermore, in order to treat all possible determinate
observables in a unified framework, another valuations are constructed in the
functor category \Sets^{\Ccal}. Here, the base category \Ccal includes all
\CcalR's as subcategories. Although \Sets^{\Ccal} has a structure
apparently different from \Sets^{\CcalR}, a subobject semi-classifier of
\Sets^{\Ccal} gives valuations completely equivalent to those in
\Sets^{\CcalR}'s.Comment: LaTeX2
Some operational aspects of a rotating advanced-technology space station for the year 2025
The study of an Advanced Technology Space Station which would utilize the capabilities of subsystems projected for the time frame of the years 2000 to 2025 is discussed. The study includes tradeoffs of nuclear versus solar dynamic power systems that produce power outputs of 2.5 megawatts and analyses of the dynamics of the spacecraft of which portions are rotated for artificial gravity. The design considerations for the support of a manned Mars mission from low Earth orbit are addressed. The studies extend to on-board manufacturing, internal gas composition effects, and locomotion and material transfer under artificial gravity forces. The report concludes with an assessment of technology requirements for the Advanced Technology Space Station
Recommended from our members
Strontium Isotopic Variations of Neoproterozoic Seawater: Implications for Crustal Evolution
We report high precision Sr isotopic data on carbonates from the Neoproterozoic Shaler Group, Victoria Island, Northwest Territories, Canada. Lithostratigraphic correlations with the relatively well-dated Mackenzie Mountains Supergroup constrain Shaler deposition to approximately 770-880 Ma, a range corroborated by 723 +/- 3 Ma lavas that disconformably overlie Shaler carbonates and by Late Riphean microfossils within the section. Samples with low Rb-87/Sr-86 ratios (< 0.01) were selected for Sr isotopic analysis. delta-O-18, Mn, Ca, Mg, and Sr data were used to recognize altered samples. The altered samples are characterized by high Mn/Sr (greater-than-or-equal-to 2) and variable delta-O-18; most are dolomites. The data indicate that between ca. 790-850 Ma the Sr-87/Sr-86 ratio of seawater varued between 0.70676 and 0.70561. The samples show smooth and systematic variation, with the lowest Sr-87/Sr-86 value of 0.70561 at ca. 830 Ma. The low Sr-87/Sr-86 ratio of carbonates from the lower parts of our section is similar to a value reported for one sample from the Adrar of Mauritania (almost-equal-to 900 Ma), West African Craton. Isotopic ratios from the upper part of the Shaler section are identical to values from the lower part of the Neoproterozoic Akademikerbreen Group, Spitsbergen. Although a paucity of absolute age determinations hinders attempts at the precise correlation of Neoproterozoic successions, it is possible to draw a broad outline of the Sr isotopic composition of seawater for this period. Indeed, the Sr isotope data themselves provide a stratigraphic tool of considerable potential. Data from this study and the literature are used to construct a curve of the Sr-87/Sr-86 ratio of Neoproterozoic seawater. The new data reported in this study substantially improve the isotopic record of Sr in seawater for the period 790-850 Ma. The Sr isotope composition of seawater reflects primarily the balance between continental Sr input through river input and mantle input via hydrothermal circulation of seawater through mid-ocean ridges. Coupling of Nd and Sr isotopic systems allows us to model changes in seafloor spreading rates (or hydrothermal flux) and continental erosion. The Sr hydrothermal flux and the erosion rate (relative to present-day value) are modeled for the period 500-900 Ma. The results indicate that the hydrothermal flux reached a maximum value at ca. 830 Ma. In contrast, a large peak in erosion rate is indicated at ca. 570 Ma. The peaks in hydrothermal flux and erosion rate are most likely related to developments in the Pan-African and related orogenic events, whose initial development is characterized by production of juvenile crust during supercontinental break up and rifting. The time ca. 570 Ma is characterized by continent-continent collision and production of recycled crust. Sr isotope data from Proterozoic carbonates offer a valuable resource for understanding large-scale crust dynamics.Earth and Planetary SciencesOrganismic and Evolutionary Biolog
Concepts for manned lunar habitats
The design philosophy that will guide the design of early lunar habitats will be based on a compromise between the desired capabilities of the base and the economics of its development and implantation. Preferred design will be simple, make use of existing technologies, require the least amount of lunar surface preparation, and minimize crew activity. Three concepts for an initial habitat supporting a crew of four for 28 to 30 days are proposed. Two of these are based on using Space Station Freedom structural elements modified for use in a lunar-gravity environment. A third concept is proposed that is based on an earlier technology based on expandable modules. The expandable modules offer significant advantages in launch mass and packaged volume reductions. It appears feasible to design a transport spacecraft lander that, once landed, can serve as a habitat and a stand-off for supporting a regolith environmental shield. A permanent lunar base habitat supporting a crew of twelve for an indefinite period can be evolved by using multiple initial habitats. There appears to be no compelling need for an entirely different structure of larger volume and increased complexity of implantation
Analysis of a rotating advanced-technology space station for the year 2025
An analysis is made of several aspects of an advanced-technology rotating space station configuration generated under a previous study. The analysis includes examination of several modifications of the configuration, interface with proposed launch systems, effects of low-gravity environment on human subjects, and the space station assembly sequence. Consideration was given also to some aspects of space station rotational dynamics, surface charging, and the possible application of tethers
Saltation transport on Mars
We present the first calculation of saltation transport and dune formation on
Mars and compare it to real dunes. We find that the rate at which grains are
entrained into saltation on Mars is one order of magnitude higher than on
Earth. With this fundamental novel ingredient, we reproduce the size and
different shapes of Mars dunes, and give an estimate for the wind velocity on
Mars.Comment: 4 pages, 3 figure
(Quantum) Space-Time as a Statistical Geometry of Fuzzy Lumps and the Connection with Random Metric Spaces
We develop a kind of pregeometry consisting of a web of overlapping fuzzy
lumps which interact with each other. The individual lumps are understood as
certain closely entangled subgraphs (cliques) in a dynamically evolving network
which, in a certain approximation, can be visualized as a time-dependent random
graph. This strand of ideas is merged with another one, deriving from ideas,
developed some time ago by Menger et al, that is, the concept of probabilistic-
or random metric spaces, representing a natural extension of the metrical
continuum into a more microscopic regime. It is our general goal to find a
better adapted geometric environment for the description of microphysics. In
this sense one may it also view as a dynamical randomisation of the causal-set
framework developed by e.g. Sorkin et al. In doing this we incorporate, as a
perhaps new aspect, various concepts from fuzzy set theory.Comment: 25 pages, Latex, no figures, some references added, some minor
changes added relating to previous wor
Interacting classical and quantum ensembles
A consistent description of interactions between classical and quantum
systems is relevant to quantum measurement theory, and to calculations in
quantum chemistry and quantum gravity. A solution is offered here to this
longstanding problem, based on a universally-applicable formalism for ensembles
on configuration space. This approach overcomes difficulties arising in
previous attempts, and in particular allows for backreaction on the classical
ensemble, conservation of probability and energy, and the correct classical
equations of motion in the limit of no interaction. Applications include
automatic decoherence for quantum ensembles interacting with classical
measurement apparatuses; a generalisation of coherent states to hybrid harmonic
oscillators; and an equation for describing the interaction of quantum matter
fields with classical gravity, that implies the radius of a Robertson-Walker
universe with a quantum massive scalar field can be sharply defined only for
particular `quantized' values.Comment: 31 pages, minor clarifications and one Ref. added, to appear in PR
- …
