3,533 research outputs found

    An advanced technology space station for the year 2025, study and concepts

    Get PDF
    A survey was made of potential space station missions that might exist in the 2020 to 2030 time period. Also, a brief study of the current state-of-the-art of the major subsystems was undertaken, and trends in technologies that could impact the subsystems were reviewed. The results of the survey and study were then used to arrive at a conceptual design of a space station for the year 2025. Factors addressed in the conceptual design included requirements for artificial gravity, synergies between subsystems, and the use of robotics. Suggestions are made relative to more in-depth studies concerning the conceptual design and alternative configurations

    A Topos Perspective on State-Vector Reduction

    Full text link
    A preliminary investigation is made of possible applications in quantum theory of the topos formed by the collection of all MM-sets, where MM is a monoid. Earlier results on topos aspects of quantum theory can be rederived in this way. However, the formalism also suggests a new way of constructing a `neo-realist' interpretation of quantum theory in which the truth values of propositions are determined by the actions of the monoid of strings of finite projection operators. By these means, a novel topos perspective is gained on the concept of state-vector reduction

    Topos-Theoretic Extension of a Modal Interpretation of Quantum Mechanics

    Full text link
    This paper deals with topos-theoretic truth-value valuations of quantum propositions. Concretely, a mathematical framework of a specific type of modal approach is extended to the topos theory, and further, structures of the obtained truth-value valuations are investigated. What is taken up is the modal approach based on a determinate lattice \Dcal(e,R), which is a sublattice of the lattice \Lcal of all quantum propositions and is determined by a quantum state ee and a preferred determinate observable RR. Topos-theoretic extension is made in the functor category \Sets^{\CcalR} of which base category \CcalR is determined by RR. Each true atom, which determines truth values, true or false, of all propositions in \Dcal(e,R), generates also a multi-valued valuation function of which domain and range are \Lcal and a Heyting algebra given by the subobject classifier in \Sets^{\CcalR}, respectively. All true propositions in \Dcal(e,R) are assigned the top element of the Heyting algebra by the valuation function. False propositions including the null proposition are, however, assigned values larger than the bottom element. This defect can be removed by use of a subobject semi-classifier. Furthermore, in order to treat all possible determinate observables in a unified framework, another valuations are constructed in the functor category \Sets^{\Ccal}. Here, the base category \Ccal includes all \CcalR's as subcategories. Although \Sets^{\Ccal} has a structure apparently different from \Sets^{\CcalR}, a subobject semi-classifier of \Sets^{\Ccal} gives valuations completely equivalent to those in \Sets^{\CcalR}'s.Comment: LaTeX2

    Some operational aspects of a rotating advanced-technology space station for the year 2025

    Get PDF
    The study of an Advanced Technology Space Station which would utilize the capabilities of subsystems projected for the time frame of the years 2000 to 2025 is discussed. The study includes tradeoffs of nuclear versus solar dynamic power systems that produce power outputs of 2.5 megawatts and analyses of the dynamics of the spacecraft of which portions are rotated for artificial gravity. The design considerations for the support of a manned Mars mission from low Earth orbit are addressed. The studies extend to on-board manufacturing, internal gas composition effects, and locomotion and material transfer under artificial gravity forces. The report concludes with an assessment of technology requirements for the Advanced Technology Space Station

    Concepts for manned lunar habitats

    Get PDF
    The design philosophy that will guide the design of early lunar habitats will be based on a compromise between the desired capabilities of the base and the economics of its development and implantation. Preferred design will be simple, make use of existing technologies, require the least amount of lunar surface preparation, and minimize crew activity. Three concepts for an initial habitat supporting a crew of four for 28 to 30 days are proposed. Two of these are based on using Space Station Freedom structural elements modified for use in a lunar-gravity environment. A third concept is proposed that is based on an earlier technology based on expandable modules. The expandable modules offer significant advantages in launch mass and packaged volume reductions. It appears feasible to design a transport spacecraft lander that, once landed, can serve as a habitat and a stand-off for supporting a regolith environmental shield. A permanent lunar base habitat supporting a crew of twelve for an indefinite period can be evolved by using multiple initial habitats. There appears to be no compelling need for an entirely different structure of larger volume and increased complexity of implantation

    Analysis of a rotating advanced-technology space station for the year 2025

    Get PDF
    An analysis is made of several aspects of an advanced-technology rotating space station configuration generated under a previous study. The analysis includes examination of several modifications of the configuration, interface with proposed launch systems, effects of low-gravity environment on human subjects, and the space station assembly sequence. Consideration was given also to some aspects of space station rotational dynamics, surface charging, and the possible application of tethers

    Saltation transport on Mars

    Full text link
    We present the first calculation of saltation transport and dune formation on Mars and compare it to real dunes. We find that the rate at which grains are entrained into saltation on Mars is one order of magnitude higher than on Earth. With this fundamental novel ingredient, we reproduce the size and different shapes of Mars dunes, and give an estimate for the wind velocity on Mars.Comment: 4 pages, 3 figure

    (Quantum) Space-Time as a Statistical Geometry of Fuzzy Lumps and the Connection with Random Metric Spaces

    Get PDF
    We develop a kind of pregeometry consisting of a web of overlapping fuzzy lumps which interact with each other. The individual lumps are understood as certain closely entangled subgraphs (cliques) in a dynamically evolving network which, in a certain approximation, can be visualized as a time-dependent random graph. This strand of ideas is merged with another one, deriving from ideas, developed some time ago by Menger et al, that is, the concept of probabilistic- or random metric spaces, representing a natural extension of the metrical continuum into a more microscopic regime. It is our general goal to find a better adapted geometric environment for the description of microphysics. In this sense one may it also view as a dynamical randomisation of the causal-set framework developed by e.g. Sorkin et al. In doing this we incorporate, as a perhaps new aspect, various concepts from fuzzy set theory.Comment: 25 pages, Latex, no figures, some references added, some minor changes added relating to previous wor

    Interacting classical and quantum ensembles

    Full text link
    A consistent description of interactions between classical and quantum systems is relevant to quantum measurement theory, and to calculations in quantum chemistry and quantum gravity. A solution is offered here to this longstanding problem, based on a universally-applicable formalism for ensembles on configuration space. This approach overcomes difficulties arising in previous attempts, and in particular allows for backreaction on the classical ensemble, conservation of probability and energy, and the correct classical equations of motion in the limit of no interaction. Applications include automatic decoherence for quantum ensembles interacting with classical measurement apparatuses; a generalisation of coherent states to hybrid harmonic oscillators; and an equation for describing the interaction of quantum matter fields with classical gravity, that implies the radius of a Robertson-Walker universe with a quantum massive scalar field can be sharply defined only for particular `quantized' values.Comment: 31 pages, minor clarifications and one Ref. added, to appear in PR
    corecore