42,990 research outputs found
Hoop/column antenna deployment mechanism overview
The hoop/column antenna program is directed toward the development of a cost effective, large area, self deploying reflector antenna system. Large surface area antenna systems are required in future space missions involving improved land communications, Earth resources observation, and the study of intergalactic energy sources. The hoop/column antenna is a concept where a large antenna system can be packaged within the Space Transportation System (Shuttle) payload bay, launched into Earth orbit where it is released either for deployment as an Earth observation or communications antenna, or boosted into deep space as an intergalactic energy probe. Various mechanisms and support structures are described that are required to deploy the hoop, which is used to support the antenna reflective surface, and the column that is used to position the antenna feeds and the reflector. It also describes a proof-of-concept model (15 meters in diameter) that is currently being ground tested to determine the adequacy of the deployment mechanisms
Neutrino Physics and Nuclear Axial Two-Body Interactions
We consider the counter-term describing isoscalar axial two-body currents in
the nucleon-nucleon interaction, L1A, in the effective field theory approach.
We determine this quantity using the solar neutrino data. We investigate the
variation of L1A when different sets of data are used.Comment: 8 pages with 4 figures. To be published in the Proceedings of the
Conference "Blueprints For The Nucleus: From First Principles to Collective
Motion" held at Feza Gursey Institute, Istanbul, Turkey; May 17 -22, 200
The Greater Sum of Collaboration: Adding Value to Mathematics Education Through Teamwork
The role of a Mathematics Specialist can vary from pre-K through grade 8 schools. One of the most distinguishing factors involves the relationship between the Mathematics Specialists, administrators, and teachers. In this article, we share our experiences in a school culture that supports common language, collective commitments, trust, and transparency. Using this model, we have experienced high levels of teacher professionalism and student success. As lifelong learners, we continually reflect upon our practices and look for ways to meet the needs of our students. This occurs by implementing purposeful meeting structures that allow us to facilitate discussions around mathematics content, lesson planning, assessment results, and student progress. Administrators Brian Butler and Diane Kerr, along with Mathematics Specialists Tracey Hulen and Jennifer Deinhart, have formed a powerful relationship at Mason Crest Elementary School. This is a Title I school with 560 students, pre-K through grade 5, which promotes reflective practices and allows for flexibility and creativity as we continue to strengthen and improve our practices. Together, we share a story of our collaborative journey with teachers and students to create an effective mathematics program that embraces a conceptual learning philosophy. Ultimately there are two kinds of schools: learning-enriched schools and learning impoverished schools. I have yet to see a school where the learning curves ... of the adults were steeped upward and those of the students were not. Teachers and students go hand in hand as learners ... or they don\u27t go at all. [1] Roland Barth, Hand in Hand, We All Lear
List Size, Standards and Perfromance in General Practice - A Pilot Study in the South East Thames Region
This is a report of a piolt study carried out among 155 general practitioner trainers in South East Thames region. Similar pilot studies have been carried out among trainers in four other regions on England. Separate reports have been prepared for each of the five regions, together with a summary report comparing the findings among the regions. The pilot studies were funded by the DHSS and carried out by staff of the Health Services Research Unit at the University of Kent at Camterbury
Domain wall switching: optimizing the energy landscape
It has recently been suggested that exchange spring media offer a way to
increase media density without causing thermal instability
(superparamagnetism), by using a hard and a soft layer coupled by exchange.
Victora has suggested a figure of merit xi = 2 E_b/mu_0 m_s H_sw, the ratio of
the energy barrier to that of a Stoner-Wohlfarth system with the same switching
field, which is 1 for a Stoner-Wohlfarth (coherently switching) particle and 2
for an optimal two-layer composite medium. A number of theoretical approaches
have been used for this problem (e.g., various numbers of coupled
Stoner-Wohlfarth layers and continuum micromagnetics). In this paper we show
that many of these approaches can be regarded as special cases or
approximations to a variational formulation of the problem, in which the energy
is minimized for fixed magnetization. The results can be easily visualized in
terms of a plot of the energy as a function of magnetic moment m_z, in which
both the switching field [the maximum slope of E(m_z)] and the stability
(determined by the energy barrier E_b) are geometrically visible. In this
formulation we can prove a rigorous limit on the figure of merit xi, which can
be no higher than 4. We also show that a quadratic anistropy suggested by Suess
et al comes very close to this limit.Comment: Acccepted for proceedings of Jan. 2007 MMM Meeting, paper BE-0
- …