33 research outputs found

    The Effect of Focusing and Caustics on Exit Phenomena in Systems Lacking Detailed Balance

    Full text link
    We study the trajectories followed by a particle subjected to weak noise when escaping from the domain of attraction of a stable fixed point. If detailed balance is absent, a _focus_ may occur along the most probable exit path, leading to a breakdown of symmetry (if present). The exit trajectory bifurcates, and the exit location distribution may become `skewed' (non-Gaussian). The weak-noise asymptotics of the mean escape time are strongly affected. Our methods extend to the study of skewed exit location distributions in stochastic models without symmetry.Comment: REVTEX macros (latest version). Two accompanying PS figures, one of which is large (over 600K unpacked

    Statistical techniques to construct assays for identifying likely responders to a treatment under evaluation from cell line genomic data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Developing the right drugs for the right patients has become a mantra of drug development. In practice, it is very difficult to identify subsets of patients who will respond to a drug under evaluation. Most of the time, no single diagnostic will be available, and more complex decision rules will be required to define a sensitive population, using, for instance, mRNA expression, protein expression or DNA copy number. Moreover, diagnostic development will often begin with in-vitro cell-line data and a high-dimensional exploratory platform, only later to be transferred to a diagnostic assay for use with patient samples. In this manuscript, we present a novel approach to developing robust genomic predictors that are not only capable of generalizing from in-vitro to patient, but are also amenable to clinically validated assays such as qRT-PCR.</p> <p>Methods</p> <p>Using our approach, we constructed a predictor of sensitivity to dacetuzumab, an investigational drug for CD40-expressing malignancies such as lymphoma using genomic measurements of cell lines treated with dacetuzumab. Additionally, we evaluated several state-of-the-art prediction methods by independently pairing the feature selection and classification components of the predictor. In this way, we constructed several predictors that we validated on an independent DLBCL patient dataset. Similar analyses were performed on genomic measurements of breast cancer cell lines and patients to construct a predictor of estrogen receptor (ER) status.</p> <p>Results</p> <p>The best dacetuzumab sensitivity predictors involved ten or fewer genes and accurately classified lymphoma patients by their survival and known prognostic subtypes. The best ER status classifiers involved one or two genes and led to accurate ER status predictions more than 85% of the time. The novel method we proposed performed as well or better than other methods evaluated.</p> <p>Conclusions</p> <p>We demonstrated the feasibility of combining feature selection techniques with classification methods to develop assays using cell line genomic measurements that performed well in patient data. In both case studies, we constructed parsimonious models that generalized well from cell lines to patients.</p

    Microenvironmental Influence on Pre-Clinical Activity of Polo-Like Kinase Inhibition in Multiple Myeloma: Implications for Clinical Translation

    Get PDF
    Polo-like kinases (PLKs) play an important role in cell cycle progression, checkpoint control and mitosis. The high mitotic index and chromosomal instability of advanced cancers suggest that PLK inhibitors may be an attractive therapeutic option for presently incurable advanced neoplasias with systemic involvement, such as multiple myeloma (MM). We studied the PLK 1, 2, 3 inhibitor BI 2536 and observed potent (IC50<40 nM) and rapid (commitment to cell death <24 hrs) in vitro activity against MM cells in isolation, as well as in vivo activity against a traditional subcutaneous xenograft mouse model. Tumor cells in MM patients, however, don't exist in isolation, but reside in and interact with the bone microenvironment. Therefore conventional in vitro and in vivo preclinical assays don't take into account how interactions between MM cells and the bone microenvironment can potentially confer drug resistance. To probe this question, we performed tumor cell compartment-specific bioluminescence imaging assays to compare the preclinical anti-MM activity of BI 2536 in vitro in the presence vs. absence of stromal cells or osteoclasts. We observed that the presence of these bone marrow non-malignant cells led to decreased anti-MM activity of BI 2536. We further validated these results in an orthotopic in vivo mouse model of diffuse MM bone lesions where tumor cells interact with non-malignant cells of the bone microenvironment. We again observed that BI 2536 had decreased activity in this in vivo model of tumor-bone microenvironment interactions highlighting that, despite BI 2536's promising activity in conventional assays, its lack of activity in microenvironmental models raises concerns for its clinical development for MM. More broadly, preclinical drug testing in the absence of relevant tumor microenvironment interactions may overestimate potential clinical activity, thus explaining at least in part the gap between preclinical vs. clinical efficacy in MM and other cancers

    Remarkable fly (Diptera) diversity in a patch of Costa Rican cloud forest : Why inventory is a vital science

    Get PDF
    Study of all flies (Diptera) collected for one year from a four-hectare (150 x 266 meter) patch of cloud forest at 1,600 meters above sea level at Zurqui de Moravia, San Jose Province, Costa Rica (hereafter referred to as Zurqui), revealed an astounding 4,332 species. This amounts to more than half the number of named species of flies for all of Central America. Specimens were collected with two Malaise traps running continuously and with a wide array of supplementary collecting methods for three days of each month. All morphospecies from all 73 families recorded were fully curated by technicians before submission to an international team of 59 taxonomic experts for identification. Overall, a Malaise trap on the forest edge captured 1,988 species or 51% of all collected dipteran taxa (other than of Phoridae, subsampled only from this and one other Malaise trap). A Malaise trap in the forest sampled 906 species. Of other sampling methods, the combination of four other Malaise traps and an intercept trap, aerial/hand collecting, 10 emergence traps, and four CDC light traps added the greatest number of species to our inventory. This complement of sampling methods was an effective combination for retrieving substantial numbers of species of Diptera. Comparison of select sampling methods (considering 3,487 species of non-phorid Diptera) provided further details regarding how many species were sampled by various methods. Comparison of species numbers from each of two permanent Malaise traps from Zurqui with those of single Malaise traps at each of Tapanti and Las Alturas, 40 and 180 km distant from Zurqui respectively, suggested significant species turnover. Comparison of the greater number of species collected in all traps from Zurqui did not markedly change the degree of similarity between the three sites, although the actual number of species shared did increase. Comparisons of the total number of named and unnamed species of Diptera from four hectares at Zurqui is equivalent to 51% of all flies named from Central America, greater than all the named fly fauna of Colombia, equivalent to 14% of named Neotropical species and equal to about 2.7% of all named Diptera worldwide. Clearly the number of species of Diptera in tropical regions has been severely underestimated and the actual number may surpass the number of species of Coleoptera. Various published extrapolations from limited data to estimate total numbers of species of larger taxonomic categories (e.g., Hexapoda, Arthropoda, Eukaryota, etc.) are highly questionable, and certainly will remain uncertain until we have more exhaustive surveys of all and diverse taxa (like Diptera) from multiple tropical sites. Morphological characterization of species in inventories provides identifications placed in the context of taxonomy, phylogeny, form, and ecology. DNA barcoding species is a valuable tool to estimate species numbers but used alone fails to provide a broader context for the species identified.Peer reviewe

    Comprehensive inventory of true flies (Diptera) at a tropical site

    Get PDF
    Estimations of tropical insect diversity generally suffer from lack of known groups or faunas against which extrapolations can be made, and have seriously underestimated the diversity of some taxa. Here we report the intensive inventory of a four-hectare tropical cloud forest in Costa Rica for one year, which yielded 4332 species of Diptera, providing the first verifiable basis for diversity of a major group of insects at a single site in the tropics. In total 73 families were present, all of which were studied to the species level, providing potentially complete coverage of all families of the order likely to be present at the site. Even so, extrapolations based on our data indicate that with further sampling, the actual total for the site could be closer to 8000 species. Efforts to completely sample a site, although resource-intensive and time-consuming, are needed to better ground estimations of world biodiversity based on limited sampling
    corecore